Domov » Osebje » doc. dr. Boštjan Gabrovšek » Bibliografija / Publications

Bibliografija / Publications


  1. A Markov theorem for generalized plat decomposition (with A. Cattabriga), to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (2020)
  2. The Alexander polynomial for closed braids in lens spaces (with E. Horvat), to appear in J. Pure Appl. Algebra (2019)
  3. Knot Invariants in Lens Spaces (with E. Horvat), ed. Adams C. et al., Knots, Low-Dimensional Topology and Applications. Springer Proceedings in Mathematics & Statistics 284. Springer, Cham (2019)
  4. On the Alexander polynomial of links in lens spaces (with E. Horvat), to appear J. Knot Theory Ramif. (2019)
  5. Infinitely many sign-changing solutions for Kirchhoff type problems in R3 (with J. Sun, L. Li, and M. Cencelj), Nonlinear Analysis (2019)
  6. On the KBSM of links in lens spaces (with E. Manfredi), J. Knot Theory Ramif. 27:01 (2018)
  7. Link diagrams and applications to skein modules (with M. Mroczkowski), Algebraic Modelling of Topological and Computational Structures and Applications, Springer Proceedings in Mathematics & Statistics (2017)
  8. Tabulation of prime knots in lens spaces, Mediterr. J. Math 44:88 (2017)
  9. On the Seifert fibered space link group (with E. Manfredi), Topol. Appl. 206 (2016), 255-275
  10. The HOMFLYPT skein module of the lens spaces Lp,1 (with M. Mroczkowski), Topol. Appl. 175 (2014), 72-80
  11. The categorification of the Kauffman bracket skein module of RP3, Bull. Austral. Math. Soc. 88:3 (2013), 407-422
  12. Knots in the solid torus up to 6 crossings (with M. Mroczkowski), J. Knot Theory Ramif. 21:11 (2012)


  1. Classification of knots in lens spaces, PhD thesis (2013)


  1. The HOMFLYPT skein module of colored bonded knots, preprint (2019)

Work in progress

  1. Knot theory in lens spaces (with I. Diamantis, S. Lambropoulou, and M. Mroczkowski), De Gruyter (by invitation), monograph in preparation
  2. On the independent rainbow domination numbers of generalized Petersen graphs P(n,2) and P(n,3) (with  A. Peperko and J. Žerovnik)
  3. Multiple Hungarian method for k-assignment problem (with T. Novak, J. Povh, D. Rupnik Poklukar, and J. Žerovnik)

Trefoil knot