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Automatic chatter detection in grinding
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Abstract

Two methods for automatic chatter detection in outer diameter plunge feed grinding are proposed. The methods employ entropy
and coarse-grained information rate (CIR) as indicators of chatter. Entropy is calculated from a power spectrum, while CIR is
calculated directly from fluctuations of a recorded signal. The methods are verified using signals of the normal grinding force and
RMS acoustic emission. The results show that entropy and CIR perform equally well as chatter indicators. Based on the normal
grinding force, they detect chatter in its early stage, while only cases of strong chatter are detected based on RMS acoustic emission.
 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Chatter vibration is an unfavorable dynamic phenom-
enon encountered in various machining processes. In
grinding, which is often the finishing machining oper-
ation, the occurrence of chatter is particularly critical
because it adversely affects the two main objectives of
grinding: geometrical form accuracy and surface finish
of the ground workpieces. In order to avoid additional
costs due to rework or even disposal of chatter-damaged
workpieces, early and reliable detection of chatter is
necessary.

Regardless of its cause, chatter in grinding usually
manifests itself as large amplitude, nearly harmonic
vibrations of the grinding wheel and the workpiece[1].
These vibrations distort the round form of the wheel
and/or the workpiece. Since wheel and workpiece mac-
rogeometries are difficult to measure on-line in rough
industrial environment, chatter detection relies mostly on
the measurements of acoustic emission (AE), acceler-
ations, or grinding forces[1].

Although recognizing the presence of chatter appears
as a relatively simple task for a trained machine operator,
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only a few methods ofautomatic chatter detection can
be found in the literature (see reviews[1–3]). Most of
them combine AE signals as a source of information and
neural networks as a pattern recognition tool. In one of
the methods[4], a back-propagation neural network was
employed to detect chatter based on power spectra of the
enveloped AE signal. A different approach to automatic
chatter detection has been proposed recently[5,6],
employing a scalar indicator, the coarse-grained entropy
rate (CER), calculated from the fluctuations of the nor-
mal grinding force.

This article is partly an extension of the work
presented in[5,6]. Two chatter detection methods are
proposed based on two scalar indicators: entropy, calcu-
lated from a power spectrum, and coarse-grained infor-
mation rate (CIR), calculated from fluctuations of a
recorded signal. The methods are verified on signals of
the normal grinding force and RMS AE recorded in outer
diameter plunge feed grinding. The results show that the
methods perform equally well and are both appropriate
for on-line automatic chatter detection. It is also shown
that the normal grinding force is more sensitive to chatter
vibration than AE, providing early and more reliable
detection of chatter.
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2. Entropy and information rate

Entropy and information rate are quantities defined in
the information theory. In the following, their definitions
are briefly reviewed. More details can be found in [7].

2.1. Entropy

Consider a discrete random variable X which can
attain any value from a set � = {x1,x2,…,xn}, with a
probability distribution denoted as p(x) = P(X = x). The
entropy of the variable X is defined as:

H(X) � ��
x��

p(x)logp(x). (1)

H(x) quantifies the average amount of information
gained from observing which xi from � actually
occurred in the experiment. The values of H(X) are
bounded to the interval [0, log n]. The upper bound is
obtained for equiprobable xi, i.e. p(xi) = 1 /n for all i. On
the other hand, if one particular xj is much more probable
than all other xi, p(xj)�p(xi), the value of H(X) is close
to 0.

For the purpose of chatter detection, power spectrum
S of a recorded signal is considered as a probability dis-
tribution of X, whereby the individual values xi from �
and their probabilities p(xi) correspond to the frequencies
fi and their amplitudes s(fi), respectively. In order to
mimic the properties of a probability distribution, the
amplitudes s(fi) have to be scaled such that their sum
equals 1. It is also convenient to normalize H(X) by its
maximum so that the values of H(X) become bounded
to the interval [0,1]. The normalized entropy is hereafter
denoted by H�(X).

2.2. Information rate

Let us now consider two random variables, X and Y,
with the corresponding sets of values �X and �Y, indi-
vidual probability distributions p(x) and p(y), and a joint
probability distribution p(x, y) = P(X = x, Y = y). Anal-
ogous to Eq. (1), the joint entropy of X and Y is
defined as:

H(X,Y) � � �
x��X

�
y��Y

p(x,y)logp(x,y) (2)

The average amount of information about the variable
Y contained in the variable X is measured by the mutual
information I(X,Y):

I(X;Y) � H(X) � H(Y)�H(X,Y) (3)

� �
x��X

�
y��Y

p(x,y)log
p(x,y)

p(x)p(y)
.

In order to define the information rate, we turn to

dynamic systems for which the variables X and Y are
time dependent, X(t) and Y(t). For many experimental
dynamic systems, such as a machine–tool–workpiece
assembly, all the variables describing their dynamics are
neither known nor measurable. However, as shown by
the chaos theory [8,9], it may often suffice to have access
to a single variable which meaningfully reflects the sys-
tem dynamics.

Now, let X(t) denote the measured variable and x(t)
its value sampled at discrete times t = i�t, i = 1,2,....
Replacing variables X and Y by x(t) and its time delayed
value x(t + t), respectively, the norm of the mutual infor-
mation can be defined as [10]:

CIR � |I(x(t);x(t � t))| � (4)

1
tmax

�tmax

t � �t

I(x(t);x(t � t))�t,

with �t = �t as the usual choice for the delay increment
�t. The maximal time delay tmax should be chosen such
that I(x(t);x(t + t))�0 for t�tmax.

The norm |I(x(t);x(t + t))| in Eq. (4) is called the
“coarse-grained information rate” . The term “coarse-
grained” stems from the fact that the CIR is only a coarse
and relative estimate of the exact information rate which
is difficult to estimate from experimental data [10,11].
Nevertheless, both the CIR and the exact information
rate have the same physical interpretation as measures
of predictability of process dynamics. The values of CIR
are bounded to the interval [0,M] where the upper limit
M is finite and depends on the way of the estimation of
probability distributions (see Eq. (3)). CIR is close to 0
for random processes which “ forget” their past in a sin-
gle time step �t and are therefore not predictable at all.
CIR is much higher for periodic processes which lose
no information about their history and can be predicted
for infinitely long time intervals.

For the results presented in this article, the probability
distributions in Eq. (3) were estimated using histograms
with Q = 4 equiprobable bins for p(x) and Q 2 = 16 bins
for p(x,y). The upper limit of CIR was therefore M =
log Q. For the purpose of chatter detection, it is con-
venient to normalize CIR by M so that its values are
bounded to the interval [0,1]. The normalized CIR is
hereafter denoted by NCIR.

CIR is related to the coarse-grained entropy rate that
was used as an indicator of chatter in [5]. CER is a
coarse and relative estimator of Kolmogorov-Sinai
entropy of a dynamic system [8,11]. The relation
between the simplest form of CER, as defined in [5],
and CIR (Eq. (4)) is:

CER �
I(x(t);x(t � t0))�CIR

CIR
(5)

with t0 = 0 as the usual choice. Since I(x(t);x(t)) =
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H(x(t)) is constant when probability distributions are
estimated as described above, CER depends only on the
CIR. It is therefore simpler and more efficient to use the
CIR as a descriptor of process dynamics.

3. Experiments

3.1. Setup

Experiments with outer diameter plunge feed grinding
were performed on a CNC grinding machine with con-
ventional grinding wheels of two types (Fig. 1). Eight
plunges of different depths were ground on each work-
piece such that the specific material volume of V�w =
1040 mm3 /mm was reached after the eighth plunge.
Other grinding parameters were kept constant for each
workpiece, but were varied between the workpieces.
Specific material removal rate Q�w was set to 1, 3, 5 and
8 mm3/mm s, the dressing overlap Ud to 2, 4, 8 and 16,
and the speed ratio q to �20, �50 and �100, where
minus sign denotes the opposite directions of the work-
piece and wheel revolution. Altogether 50 workpieces
were ground.

Fluctuations of the normal grinding force Fn were
measured using a piezoelectric force sensor mounted
under the tail stock. Signals of AE were measured by a
sensor mounted on a spindle of the grinding wheel. Both
normal force and AE signals were initially stored on a
magnetic tape and later A–D converted at sampling rates
of 20 kHz and 2 MHz, respectively, and stored on a
computer for subsequent analysis. The analysis was per-
formed on Fn signals containing 32,768 points and root-
mean-square (RMS) AE signals, AERMS, containing
10,485 points. AERMS signals were calculated from the
raw AE signals using non-overlapping windows of 200
data points so that the sampling rate of AERMS signals
was 10 kHz. Both Fn and AERMS signals were also high-
pass filtered with a cut-off frequency of 50 Hz so that the
lowest harmonics of the workpiece and wheel revolution
frequencies were suppressed.

Three output parameters of grinding were measured

Fig. 1. Scheme of experimental setup.

off-line: roundness of the workpiece, roughness of the
ground surface, and radial wheel wear. Roundness and
roughness were measured using a stylus-type device.
The wheel was dressed prior to each workpiece.

In the following, three typical examples of chatter-
free and chatter grinding regimes are presented.

3.2. Examples of chatter-free and chatter grinding
regimes

Example 1 is from a chatter-free regime, achieved
with Q�w = 1 mm3 /mm s, Ud = 4, q = �50, and wheel
1 (see Fig. 1). The ground workpiece has a smooth pro-
file at all the eight plunges, without any marked wavy
patterns (Fig. 2). Waviness of a profile is easier to assess
from its amplitude spectrum calculated by the Fourier
transform. In this example, the amplitude spectra of the
profiles are rather flat. Similarly, no dominant spectral
peaks can be observed in amplitude spectra of the normal
grinding force and RMS acoustic emission (Fig. 3), indi-
cating only low amplitude random-like vibration dur-
ing grinding.

Example 2 represents a chatter regime, achieved with
Q�w = 8 mm3 /mm s, Ud = 4, q = �50, and wheel 1. The
roundness profiles are rougher than in the chatter-free
example, and they gradually become wavy as grinding
progresses (Fig. 4). Pronounced waviness is observed in
the last three plunges (6–8), for which chatter was also
reported by the machine operator. The amplitude spectra
of the profiles in plunges 1–5 show many small peaks
at various integer multiples of 7, which corresponds to
the ratio of the wheel and workpiece revolution fre-
quencies, 35.84 and 5.12 Hz. In plunge 6, a strong peak
at n = 105 appears, and remains present also in plunges
7 and 8, together with strong peaks at n = 7 and 14. As
proved below, the wave number 105 corresponds to the
ratio of the chatter vibration frequency (537.6 Hz in
plunge 8) and the workpiece revolution frequency. A
strong peak dominating the spectra of the normal force
is also an indication of chatter vibration (Fig. 5). In this
example, the peak appears in the third plunge. In plunges
5 and 6, its amplitude grows approximately exponen-
tially, and remains constant in plunges 7 and 8. The high-
est peak amplitudes are found in plunges with the most
expressive waviness of the roundness profiles (6–8).
Relatively slow growth of the peak amplitude indicates
that chatter was caused by the so-called regenerative
effect on the surface of the grinding wheel [1]. This
assumption is also supported by the integer ratio (15) of
the chatter vibration and wheel revolution frequencies,
suggesting that there were 15 waves on the wheel’s cir-
cumferential profile, which were, however, not measured
during the experiments. A strong peak also dominates
the spectra of the RMS acoustic emission signals, but
only in plunges 6–8, which correspond to the strongest,
fully developed chatter vibrations. As expected, the
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Fig. 2. Roundness profiles (left) and their amplitude spectra for the chatter-free regime (example 1). Wave number, n, denotes the number of
waves per workpiece circumference l.

Fig. 3. Amplitude spectra of the normal force (left) and RMS acoustic emission for the chatter-free regime (example 1). Dashed lines separate
the plunges.

Fig. 4. Roundness profiles (left) and their amplitude spectra for the chatter regime (example 2).

peak’s frequency is identical to that of the dominant peak
in the normal force spectra. However, the amplitude ratio
of the strongest peak and other peaks is much smaller
in AERMS than in the normal force spectra.

Example 3 is another chatter example, achieved with
Q�w = 3 mm3 /mm s, Ud = 16, q = �20, and wheel 2.
The types of chatter in examples 2 and 3 are different.
The difference is revealed immediately by comparing the
normal force amplitude spectra of the two examples. In
example 2 (Fig. 5), the amplitude of the dominant peak

grows throughout several plunges, whereas in example
3, it grows much faster (Fig. 6). The rapid growth of the
vibration amplitude is characteristic of the self-excited
chatter caused by the regenerative effect on the work-
piece surface [1]. Frequencies of the dominant peak,
which are 534.1 Hz (plunge 2), 540.5 Hz (plunge 5), and
538.4 Hz (plunge 6), also provide evidence in favor of
the above explanation since they are all integer multiples
of the workpiece revolution frequency (43rd in plunge
2, and 42nd in plunges 5 and 6). Peaks at the chatter
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Fig. 5. Amplitude spectra of the normal force (left) and RMS acoustic emission for the chatter regime (example 2). Dashed lines separate the
plunges.

Fig. 6. Amplitude spectra of the normal force (left) and RMS acoustic emission for the chatter regime (example 3). Dashed lines separate the
plunges.

frequencies are also found in the amplitude spectra of the
RMS acoustic emission, but their amplitudes are small.
Roundness profiles of all the eight plunges are similarly
rough (Fig. 7). Slightly pronounced wavy patterns are
observed in plunges 2 and 5. The amplitude spectra of
the profiles show peaks at wave numbers 43 for plunge
2, 20 and 42 for plunge 5, 23 and 42 for plunge 6, and
26 for plunge 8. As discussed above, the numbers 43
and 42 correspond to the ratio of the chatter vibration
and workpiece revolution frequencies. The wave num-
bers 20, 23, and 26 are close to the seventh, eighth, and

Fig. 7. Roundness profiles (left) and their amplitude spectra for the chatter regime (example 3).

ninth multiple of the ratio of wheel and workpiece revol-
ution frequencies.

Next, the chatter detection methods proposed in Sec-
tion 2 are verified on the signals of the normal grinding
force and RMS acoustic emission from the three
examples presented.

4. Chatter detection results

First, the normalized entropy of a power spectra H�(S)
is considered as an indicator of chatter. As shown in the
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preceding section, chatter-free power spectra are rela-
tively flat, whereas chatter power spectra exhibit a strong
peak at the chatter frequency. According to the proper-
ties of the entropy (Eq. (1)), it is expected that H�(S)
should be lower for chatter than that for chatter-free
regime. The results shown in Fig. 8 agree with these
expectations. For the chatter-free example (example 1),
entropy of the normal force spectra H�(SFn

) is approxi-
mately constant throughout all the eight plunges. In
example 2, the decrease of H�(SFn

) in plunges 2–5 corre-
lates well with the rise of chatter vibrations (Fig. 5).
Similarly in example 3, low values of H�(SFn

) in plunges
2, 5, 6 correctly indicate chatter. Values of the entropy
of the RMS acoustic emission spectra H�(SAERMS

) are
generally higher than values of H�(SFn

). This could be
expected because the amplitude of the chatter peak in
AERMS spectra is not as large compared to that of the
other peaks as it is in Fn spectra. Nevertheless, in chatter
examples, H�(SAERMS

) has distinctly lower values in
plunges 6–8 (example 2), and plunge 2 (example 3),
which correspond to the cases of strongest chatter
vibrations. The dashed horizontal lines in Fig. 8 denote
the suggested threshold values of H� which could be
used for the automatic detection of chatter. The thresh-
olds were set based on spectra from 50 workpieces in
order to ensure early detection of chatter and avoid false
alarms. A comparison of H� for Fn and AERMS with
respect to the corresponding thresholds confirms that the
normal force is more sensitive to chatter vibration than
RMS acoustic emission.

The second chatter indicator proposed in Section 2 is

Fig. 8. Normalized entropy of power spectra of the normal grinding
force (left) and the RMS acoustic emission. The vertical dotted lines
separate the plunges. The horizontal dashed lines denote the threshold
values, H�(SFn

) = 0.35 (left) and H�(SAERMS
) =0.8.

the normalized coarse-grained information rate (NCIR).
Here, NCIR is calculated from the fluctuations of the
normal grinding force and RMS acoustic emission. For
both Fn and AERMS, random-like fluctuations are typical
of chatter-free regime (resulting in a flat power
spectrum), while nearly harmonic fluctuations are typical
of chatter regime (spectrum with a strong peak). As a
measure of predictability, NCIR is therefore expected to
assume lower value in chatter-free than in chatter
regime. Chatter detection results using NCIR are shown
in Fig. 9. In example 1, NCIR of the normal force,
NCIR(Fn), has values close to 0 in all the eight plunges,
as it should be in a chatter-free regime. In example 2,
NCIR(Fn) increases in plunges 2–5, correctly indicating
the slow rise of chatter, whereas the “ jumps” of
NCIR(Fn) in example 3 match well with short bursts of
chatter. NCIR for fluctuations of AERMS has significantly
lower values than for Fn. Similar to the entropy of
AERMS spectra, NCIR (AERMS) increases only in plunges
with strong chatter vibrations. For the purpose of auto-
matic chatter detection, threshold values for NCIR can
be set. The threshold in Fig. 9 was set such that the
discriminating powers of both NCIR and H� (in Fig. 8)
against chatter are approximately the same.

5. Discussion and conclusions

The article proposes the application of entropy and
CIR for automatic chatter detection in grinding. Entropy

Fig. 9. Normalized coarse-grained information rate for the normal
grinding force (left) and the RMS acoustic emission. Note the differ-
ence in vertical scales of left and right graphs. The vertical dotted lines
separate the plunges. The horizontal dashed lines denote the threshold
values, NCIR(Fn) = 0.1 (left) and NCIR(AERMS) = 0.008.
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and CIR are both defined in the information theory. For
the purpose of chatter detection, entropy is calculated
from the power spectra, while CIR is calculated from
the fluctuations of the measured quantity. Normalization
of entropy and CIR limits their values to the interval
[0,1], which enables setting of a threshold needed for
automatic chatter detection. Entropy and CIR are verified
as chatter indicators in outer diameter plunge feed grind-
ing, using signals of the normal grinding force and RMS
acoustic emission. The results show that entropy and
CIR perform equally well as chatter indicators. When
calculated from the normal force signals, they indicate
the chatter already in its early, developing stage, even
before the workpiece has been damaged. In contrast,
when calculated from the RMS acoustic emission sig-
nals, they indicate only the cases of strong, fully
developed chatter, which cause pronounced waviness of
the workpiece roundness. Based on the experimental
tests, threshold values of entropy and CIR are suggested
which reliably discriminate between chatter-free and
chatter grinding regimes.

There are several properties of the indicators proposed
that render them appropriate for on-line automatic chat-
ter detection. First of all, only scalar values have to be
monitored. This is more convenient for automation than
the monitoring of multicomponent power spectrum as in
the case of spectral analysis. Second, chatter is detected
regardless of the chatter frequency. However, it is
reasonable to make a test run with chatter in order to
estimate approximately the order of magnitude of the
chatter frequency so that an appropriate sampling rate
for the measured signals can be selected. Alternatively,
the range of possible chatter frequencies can also be
inferred from the phase of the machine-tool’s transfer
function [12]. Third, because of the normalization of the
indicators, a threshold for automatic detection can be set.
The value of the threshold depends on the signals used
to calculate the indicators and on the desired sensitivity
of the monitoring system. Finally, the calculation of the
entropy and CIR is computationally simple. The time
required to acquire the signals and calculate the indi-
cators depends on the length of the signals. In this arti-
cle, all the calculations were performed on signals com-
prising 32,768 (normal force, sampled at 20 kHz) and
10,485 points (AERMS, sampled at 10 kHz). Extensive
numerical experiments have revealed that satisfying
results can be achieved with the normal force signals
containing as few as 2000 points [6]. Processing of such
short signals can be carried out in a few tenths of a
second which is fast enough for on-line monitoring.

The major cause of false alarms in the proposed chat-
ter detection methods is the harmonic vibrations in the
measured signals which become pronounced in the
absence of chatter vibrations but are not associated with

them. A possible source of such vibrations is the unbal-
ance of the wheel and/or workpiece which is reflected
in power spectra as peaks at the wheel and workpiece
revolution frequencies and a few of their higher harmon-
ics. Since these frequencies are usually known in
advance, they can be suppressed by a high-pass filter.

Finally, note that the onsets of chatter vibrations in
grinding and turning most probably represent a dynami-
cally analogous phenomenon which is described in
dynamics theory as a Hopf bifurcation [13]. Conse-
quently, the methods for chatter detection presented in
this article are expected to be useful for turning as
well [14].
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method for chatter detection in grinding, Annals of the CIRP 51
(1) (2002) 267–270.

[6] A. Baus, Potentiale der Nichtlinearen Zeitreihenanalyse bei der
Anwendung auf Schleifprozeßsignale, PhD Thesis, RWTH
Aachen, Germany (2002).

[7] T.M. Cover, J.A. Thomas, Elements of Information Theory,
Wiley Series in Telecommunications, John Wiley & Sons, Inc.,
New York, 1991.

[8] E. Ott, Chaos in Dynamical Systems, Cambridge University
Press, 1993.

[9] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cam-
bridge Nonlinear Science Series, Vol. 7, Cambridge University
Press, Cambridge, 1997.
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