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Analysis of data from periodically forced stochastic processes
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Abstract

A method for analysis of periodically forced stochastic processes is presented. The method enables extraction of the
deterministic and random components of process dynamics from measured data, provided the forcing frequency is known
and the data is sampled stroboscopically. The method is illustrated by three examples employing synthetic and experimental
data. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main goal of data analysis is to extract infor-
mation about a process from the data it generates. In
recent decades, non-periodic data have been analysed
intensively. For non-periodic data generated by deter-
ministic chaotic processes, various analytical methods
have been introduced which allow only for a small
amount of measurement noise in the data [1]. As such,
these methods are not well-suited to analysis of data
stemming from stochastic processes of which noise is
an integral part. Therefore, other methods are required
to extract information from stochastic data.

For a wide class of stochastic processes there exists
a general method for non-parametric estimation of
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the deterministic and random components of process
dynamics directly from data [2]. Processes apt for
analysis by this method can be described as

(1)
d

dt
X(t) = h

(
X(t)

) + g
(
X(t)

)
Γ (t).

Here, X(t) denotes ad-dimensional stochastic vari-
able describing the process state. Its evolution in time
is governed by the sum of deterministic and random
terms,h and gΓ , whereΓ and g denote the uncor-
related Gaussian distributed noise and the matrix of
noise amplitudes, respectively. No restricting assump-
tions for h andg are necessary. Based on the method
from Ref. [2], various possibilities for further analysis
of such stochastic processes have been proposed [3,4].

This Letter extends the above method and its ap-
plication to the class of periodically forced stochastic
processes for which the deterministic termh in Eq. (1)
is explicitly time-dependent, and can be expressed as
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the sum of a general and a periodic term:

(2)h
(
X(t), t

) = hn

(
X(t)

) + hp(t),

wherehp(t +T ) = hp(t). We show how the determin-
istic termh can be estimated from data, provided that
the forcing periodT is known and the data is sam-
pled stroboscopically, i.e., exactlyk times per forcing
period. The method is illustrated by three examples:
two examples employ synthetic data from models of-
ten applied to biomedical and engineering processes,
whereas for the third example, experimental data from
interrupted cutting is used.

2. Method

Stochastic processes modeled by Eq. (1) possess
the Markovian property. This means that the process
stateX at timet depends only on the process state at
the preceding timet − τ . The probability that the tra-
jectory of process states visits locationxn+1 in state
space at timet + τ , given that it visitsxn at timet , is
thus described by the conditional probability density
p(xn+1, t + τ |xn, t) which is independent of the tra-
jectory’s path prior to timet . It follows from Eq. (1)
that every timeti the trajectory visits locationx, its
location at timeti + τ is determined by the sum of
the deterministic and random functions,h(x, ti) and
g(x)Γ (ti). For fixedx, h depends periodically on time
(Eq. (2)),g is constant, andΓ (ti) is Gaussian distrib-
uted white noise. Adopting Itô’s definitions for sto-
chastic integrals,h and g can be estimated from the
trajectory’s path using conditional moments [5].g can
be estimated as [2]

g(x)g(x)†

(3)

= lim
τ→0

1

τ

〈(
X(ti + τ ) − x

)(
X(ti + τ ) − x

)† 〉
X(ti)=x.

Due to the periodic dependence ofh, its estimation re-
quires access to the forcing periodT and stroboscop-
ically sampled data. For data sampled exactlyk times
per forcing period, one can estimateh using

(4)h(x, j∆t) = lim
τ→0

1

τ

〈
X(ti + τ ) − x

〉
X(ti)=x,

where∆t denotes sampling time,j∆t = ti mod T ,
and j = 0,1, . . . , k − 1. In other words, to estimate

h(x) at a particular phase angle of forcing, only the
pointsX(ti ) = x at that particular phase angle can con-
tribute to the conditional average in Eq. (4).

Using Eqs. (3) and (4), the deterministic and ran-
dom components of process dynamics can therefore be
estimated for every pointx in state space, provided that
the point is visited statistically often by the process tra-
jectory X(t). Because of the limitsτ → 0, it should
be verified whether the estimatedh andg converge as
the time stepτ is decreased. Once estimates have been
obtained, they can be further analysed to extract the
properties of both the deterministic flow and noise of
the process [3,4].

3. Examples

The method is illustrated below using synthetic and
experimental data.

3.1. Stochastic resonance

Stochastic resonance is an important phenomenon
found in physical and biomedical sciences (see Ref. [6]
and references therein). The mechanism of stochas-
tic resonance can be explained by the motion of a
damped particle in a symmetrical double-well poten-
tial subjected to randomly fluctuating forces which
cause occasional transitions of the particle between
the two wells. If the particle is also forced periodi-
cally with a forcing amplitude too weak to cause tran-
sitions, the noise-induced transitions can become syn-
chronized with the periodic forcing. The motion of the
particle can be described as

(5)Ẋ(t) = aX(t) − bX(t)3 + Acos(2πνt) + gΓ (t).

In our case the parameters werea = 64, b = 4,
A = 64, ν = 0.5 Hz, andg = 14. The deterministic
termh was estimated from a trajectoryX(t) generated
using Eq. (5). Ten estimates ofh within the forcing pe-
riod are shown in Fig. 1. The estimated curves confirm
the sinusoidal dependence ofh on time, and agree well
with the corresponding theoretical curves.

3.2. Duffing oscillator

A Duffing oscillator is an oscillator with a non-
linear restoring force. It is used, for example, to model
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Fig. 1. Estimated deterministic termh(x, t) (thick lines) and its
theoretical dependence on state space locationx and timet (thin
lines).

sinusoidally forced structures undergoing large elastic
deflections [7]. The motion of the oscillating mass is
governed by

Ẋ1 = X2,

(6)

Ẋ2 = −εX2 − δX1 − µX3
1

+ Acos(2πνt) + gΓ (t).

Parametersε = 1, δ = −10, µ = 100, A = 0.9, and
ν = 0.55 Hz were chosen so as to ensure a chaotic
regime of the deterministic oscillator. Noise amplitude
was set tog = 0.6. The deterministic termh was es-
timated from a two-dimensional trajectory shown in
Fig. 2(a) with its stroboscope section superimposed.
The estimatedh was subsequently employed to re-
construct the deterministic trajectory of the process
(Fig. 2(b)) which would be observed if the oscillator
was not subjected to noise. Despite the marked dif-
ferences between the stochastic and deterministic at-
tractors, the reconstructed attractor captures the main
features of the two-well Duffing attractor. However,
the stroboscope section of the attractor also shows that
fine, fractal-like details of the original deterministic at-
tractor could not be completely reproduced.

3.3. Interrupted cutting—milling

In mechanical engineering, cutting is referred to
as interrupted when the tool periodically loses con-
tact with the workpiece. Our example is taken from
milling, where a rotating tool cuts a fixed workpiece.

Usually, the milling tool has more than one cutting
edge spaced equidistantly around its circumference.
As the tool cuts, the edges periodically enter and leave
the workpiece. During contact with the workpiece, the
force on a cutting edge either increases or decreases
monotonically, depending on the feed direction. Fur-
thermore, depending on the number of cutting edges
and the radial depth of cut, there may be no, one, or
several edges simultaneously in contact with the work-
piece. The forcing caused by such engagement of the
cutting edges is therefore not sinusoidal. In our case,
the tool had only one cutting edge (the second edge
was removed for the experiment) which was in con-
tact with the workpiece for 1/10 of the revolution pe-
riod T . This corresponds approximately to periodical
impulse forcing. Details of the milling experiments
can be found in Ref. [8].

Based on uni-directionally recorded displacements
of the workpiece fixture, two milling regimes are in-
spected here: (a) chatter-free milling, a favourable
regime for a machinist, and (b) chatter, an unfavour-
able regime. The transition between the two regimes
represents a flip bifurcation [8].1 Fig. 3 shows the fix-
ture motion in the reconstructed phase space during
the two milling regimes. It is assumed that the under-
lying dynamics of the motion can be expressed by a
two-dimensional equation (1) in which the noise term
corresponds to the influence of the non-homogeneous
material being cut. The deterministic termh estimated
from the data was used to reconstruct the deterministic
trajectories of the fixture motion shown superimposed
in Fig. 3. In the chatter-free regime (Fig. 3(a)), the de-
terministic trajectory follows a three-loop limit cycle
which indicates that the fixture–workpiece assembly
completes three oscillatory cycles per tool revolution.
The tool is in contact with the workpiece during the
upper half of the smallest loop, located in the lower left
corner of the attractor, while for the rest of the limit cy-
cle the fixture–workpiece assembly and the tool oscil-
late freely. In the chatter regime (Fig. 3(b)), determin-
istic motion on a five-loop limit cycle is found. The
tool and the workpiece come into contact twice per
tool revolution, which results in the trajectory being
driven from the outer to the inner loops and back once

1 A different type of chatter, not discussed here, is reached via a
Hopf bifurcation [9].
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(a) (b)

Fig. 2. (a) Original stochastic and (b) reconstructed deterministic trajectories of the Duffing oscillator in a chaotic regime with the corresponding
stroboscope sections superimposed. Note the difference in scales of the figures.

(a) (b)

Fig. 3. Recorded trajectories of workpiece-fixture motion (grey lines) in (a) chatter-free and (b) chatter milling regimes with the corresponding
reconstructed deterministic trajectories superimposed. Points of the stroboscope sections of the deterministic attractors are shown as black
squares. Note the difference in scales of the figures.

per tool revolution. Also shown in Fig. 3 are the stro-
boscope sections of the deterministic attractors. The
phase of the stroboscope with respect to the tool revo-
lution periodT was set to the presumed instant of first
contact between the tool and the workpiece. As pre-
dicted by the theory of highly interrupted cutting [8,9],
the chatter-free and chatter milling regimes viewed in
the stroboscope section indeed correspond to period
one (fixed point) and period two motion, respectively.

4. Conclusions

In this Letter, a recently proposed method for analy-
sis of stochastic processes [2] was extended to the
class of periodically forced processes. It was shown

how the periodically dependent deterministic com-
ponent of process dynamics can be estimated from
measured data, provided that the forcing frequency is
known and the data is sampled stroboscopically.

The method was illustrated using synthetic and ex-
perimental data. The first example employed data from
a model describing the stochastic resonance phenom-
enon. Good agreement was observed between the es-
timates and theory. Next, data simulating large elas-
tic deflections of a sinusoidally forced structure was
analysed. The deterministic motion of the structure re-
constructed from stochastic data exhibited the main
features of the structure’s original noise-free chaotic
motion. Finally, experimental data from two different
regimes of interrupted cutting (milling) was inspected.
The deterministic attractors reconstructed from the
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data enabled a detailed study of the workpiece-fixture
motion in both regimes. The results of the study agree
well with the theory of interrupted cutting dynamics.

In summary, periodically forced stochastic pro-
cesses are often encountered in physics, biology,
engineering, economics, etc. In most cases, the forcing
period is accessible and the data can be sampled
stroboscopically. We believe that the method presented
is an effective tool for the study of such processes.
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