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CHATTER ONSET IN NON-REGENERATIVE CUTTING:
A NUMERICAL STUDY
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A non-linear model of non-regenerative cutting is analyzed. When damped, the model has
a stable "xed point for small values of chip thickness. As chip thickness is increased, the "xed
point becomes unstable via a sub-critical Hopf bifurcation. This transition corresponds to
the onset of chatter. When dynamic noise is added to the system, chatter onset can occur in
the sub-critical parameter region, although chatter-free cutting is predicted by the stability
analysis of the "xed point. A noisy bifurcation diagram is compared qualitatively to
a diagram obtained experimentally in regenerative cutting. Similar features regarding the
onset of chatter are observed in both diagrams.
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1. INTRODUCTION

Chatter denotes self-excited large amplitude vibration of the tool relative to the workpiece
during machining. Given its detrimental e!ect on the workpiece, tool, and machine, chatter
has been studied intensively in past decades. One way to cause the onset of chatter is to
increase the chip width beyond a certain critical value. It has been found experimentally
[1, 2] that this critical value is higher for the transition from chatter-free cutting to
chatter than for the reverse transition. This means that when chip width is decreased,
chatter also persists across a range of chip widths for which chatter-free cutting is observed
when chip width is increased. Such hysteresis is typical for the sub-critical type of
bifurcations [3].

Analyses of simple non-linear models of cutting have revealed that the onset of chatter
could represent a sub-critical Hopf bifurcation from a stable "xed point to a stable limit
cycle [4}7]. These models describe the tool-workpiece assembly as a driven single-
degree-of-freedom oscillator, linear or non-linear, in which the driving term depends on
both the current and the delayed position of the oscillating mass [8]. In turning, where the
rotating cylindrical workpiece is cut by a "xed tool, this means that the current cut is
in#uenced by the cut performed during the previous revolution of the workpiece. Such
overlapping of successive cuts is called regeneration and can cause the onset of chatter
[9, 10]. Although simple, the delay-models correlate very well with experiments [6, 7], and
provide practically useful means for selection of chatter-free cutting parameters.

However, the delay models are not valid for processes in which the successive cuts do not
overlap. Examples of such processes include turning of threaded workpieces and planing.
Despite the lack of regeneration in these processes, chatter still occurs. Possible causes of
chatter onset are: (1) unstable non-linear plastic #ow of the cut material, (2) friction between
the tool and the cut material, (3) non-linear dependence of the cutting force on cutting
velocity, etc.
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In this article, a model of non-regenerative cutting is analyzed [11] in which the
tool}workpiece assembly is represented by two linear oscillators coupled by a non-linear
driving force. The model thus includes two of the aforementioned possible causes of chatter
onset. Previous analyses of the model have shown that during chatter, tool vibration can be
harmonic, quasi-periodic, or chaotic, depending on the cutting parameters [11}15]. Here,
the interest is only in the bifurcation which corresponds to the onset of chatter. The purpose
is to show that the onset of chatter in non-regenerative cutting represents a sub-critical
Hopf bifurcation from a stable "xed point to a stable limit cycle. Therefore, onsets of chatter
in both regenerative and non-regenerative cutting represent dynamically similar transitions.
Since the dynamics of real cutting are stochastic, the role of dynamic noise is addressed. By
using bifurcation diagrams, it is demonstrated that, in the sub-critical parameter region,
dynamic noise can cause the onset of chatter, although chatter-free cutting is expected.
Finally, a noisy bifurcation diagram is compared qualitatively to a diagram obtained
experimentally in regenerative cutting (turning). Similar features regarding the onset of
chatter are observed in both diagrams.

2. MODEL OF A CUTTING PROCESS

Consider the simpli"ed orthogonal cutting system shown in Figure 1. The workpiece
material #ows with velocity v towards the tool in the x direction, becomes plastically
deformed in the cutting zone, and slides in the form of chips along the tool face in the
y direction.

The material #ow excites the elastic tool to oscillate in the (x, y) plane. The cutting system
can be described by two coupled oscillators. Their dynamics are governed by [11]
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Figure 1. Sketch of the orthogonal cutting system.
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and vanishes for negative v and h, i.e., when the tool loses contact with the workpiece. Here,
h denotes the chip thickness, F0

x
is proportional to the chip width, and v

0
and h

0
de"ne the

reference state. The friction coe$cient is given by [11, 16]
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The sign of K is chosen so as to oppose the material motion. The friction velocity v
f

of the
material sliding along the tool face in the y direction is
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material-dependent. Their values were obtained empirically for a wide class of low
carbon-content steels, and for a reference state of h

0
"0)25mm and v

0
"6)6 m/s [11, 16].

Following reference [11], the system is non-dimensionalized by using the reference
state as
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The non-dimensional time is de"ned by ¹"v
0
/h

0
. The second order dynamic equations (1)

may be converted to a set of four "rst order di!erential equations,
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where the dot denotes the derivative with respect to ¹. The non-dimensional cutting force
and friction coe$cient are given by
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with the non-dimensional friction velocity expressed as
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Here,;( ) and sgn( ) represent a unit step function and a signum function respectively. They
are included in order to account, respectively, for the loss of contact between the tool and
the workpiece, and the change of direction of cutting velocity due to tool vibrations. Other
dimensionless parameters are written explicitly as
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Finally, the average cutting velocity and chip thickness values need to be replaced by the
actual, time-varying, values as
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In the previous investigations of the model [11}15], the equations (6) were integrated for
E
x
"1, E

y
"0)25, and <

i
"0)5, while either H

i
(proportional to the chip thickness) or F

0
(proportional to the chip width) was chosen as the control parameter. When the control
parameter was increased, harmonic, quasi-periodic, and chaotic tool oscillations were
found. Most of the results presented so far were obtained for a deterministic, noise-free,
system with zero damping (D

x
"D

y
"0). The present study extends previous studies by

considering non-zero damping, and by introducing additive dynamic noise into the system.
In reference [15], the e!ect of multiplicative dynamic noise on cutting dynamics is also
investigated, but in a di!erent context.

3. STABILITY OF CUTTING

In the machining literature, chatter-free cutting is traditionally referred to as a stable
cutting regime, while chattering is regarded as unstable [9]. When this terminology is
adopted, cutting is stable when the tool rests at a "xed point, and unstable when the tool
oscillates. Therefore, in order to check the cutting stability, one "rst has to determine the
"xed points of the system (6), and assess their stability.

Fixed points X* can be found by solving X0 "F[X]"0. It is obvious from equations (6)
that X*
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A general, non-linear, approach to stability analysis requires the use of Lyapunov

functions which, in the present case, are not easy to determine. One could also examine
stability of the "xed point numerically, by determining its domains of attraction. However,
for the sake of simplicity one can apply the linear stability theory which is limited to small
disturbances. Stability of the "xed point is determined by the eigenvalues j
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evaluated at the "xed point X*. Eigenvalues are usually arranged in descending order
j
1
*j

2
*2.

The investigated "xed point has two pairs of complex conjugate eigenvalues, j
1,2

and
j
3,4

, for a wide parameter range. Figure 2 shows the dependence of the real parts of j
1,2

and
j
3,4

on the nominal chip thickness H
i
. For the undamped case, D

x
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is unstable, representing a saddle in the phase space for H
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(0)22, and a source for

H
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'0)22. For the damped case, D
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"0)1, the "xed point is stable for H
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'0)35: a saddle for 0)35(H

i
(0)84, and a source for H
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'0)84. The

transition observed at H
i
+0)35, where the real part of the complex conjugate eigenvalue

pair j
1,2

changes sign, is known as the Hopf bifurcation from a stable to an unstable "xed
point and a stable limit cycle [3]. Below it will be shown that this transition corresponds to
the onset of chatter.

4. ONSET OF CHATTER

To simulate a slow and smooth increase and decrease of chip thickness h, the system (6)
was solved numerically with H

i
slowly increasing and decreasing. The model parameters



Figure 2. The real parts of the stability coe$cients j
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Figure 3. Dependence of X
1

amplitudes on the nominal chip thickness H
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; black dots*H

i
smoothly increased,

grey dots*H
i
smoothly decreased.
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were chosen in accordance with references [11, 12], and damping was set to D
x
"D

y
"0)1.

In order to facilitate comparison with the numerical solutions of the noisy system discussed
in section 5, an Euler integration scheme was used to solve the equations. The integration
step of 0)001 was found to be short enough for the solutions to converge reasonably well.
Following reference [12], the discontinuous functions;( ) and sgn( ) were approximated by
1
2
(1#tanh x/e) and tanh x/e, respectively, and equations (6) treated as if they were

continuous.
The dependence of positive amplitudes of the tool motion in the x direction on the

nominal chip thickness H
i
is shown in Figure 3. When H

i
is increased, the tool rests at the

"xed point which is shifted linearly with H
i
. This corresponds to increasing elastic
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deformation of the tool subjected to an increasing load (see Figure 1). When the "xed point
becomes unstable (H

i
+0)35) large amplitude oscillations develop. This bifurcation

corresponds to the onset of chatter. As H
i
is further increased, the amplitude of harmonic

oscillations increases. Another bifurcation occurs at H
i
+0)84, but we do not have an

experimentally supported explanation for this as yet. When the nominal chip thickness H
i
is

decreased, the bifurcation scenario is repeated in the reverse order. However, chatter
vibrations persist well below the stability limit of the "xed point (H

i
+0)35), and the

transition from chatter to chatter-free cutting occurs at H
i
+0)25. Because of di!erent

H
i
values at the forward and backward bifurcations, a hysteresis appears which is typical of

the sub-critical type of bifurcations [3]. One can therefore conclude that the onset of chatter
in non-regenerative cutting corresponds to a sub-critical Hopf bifurcation.

Sub-critical bifurcations are often unfavourable in practice because inside the hysteresis
(in the sub-critical region) two stable attractors co-exist, and random in#uences in the
process can drive the trajectory from one attractor to the other. In the present case, the two
attractors correspond to a "xed point (chatter-free cutting) and a limit cycle (chatter), and
random in#uences could cause the onset of chatter while the "xed point was still stable.
Since the dynamics of real cutting are stochastic, and noise is inherent to the process, the
situation described is a realistic one.

5. THE INFLUENCE OF NOISE

A possible source of dynamic noise in cutting could be the #ow of non-homogeneous
cut material. In the "rst approximation, this e!ect could be accounted for by adding
a random term to the model equations (6) which now assume the form of a Langevin
equation:
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44
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such a matrix of noise amplitudes g, a random term is added only to the equations for the
accelerations of the two oscillators (see equations (6)). In the present case, this is similar, but
not equivalent, to disturbing randomly the cutting forces. The disturbances could be caused
by variable grain size of the cut material. Since g is diagonal, noise in the x direction is
uncoupled from noise in the y direction. This simpli"cation was found not to be particularly
important, because coupled noise did not introduce considerable changes to the cutting
dynamics when compared to the dynamics with uncoupled noise.

Figure 4(a) shows the dependence of maximal X
1

amplitudes on the nominal chip
thickness H

i
for g"0)003. Although noisy, the dependences are similar to the

corresponding ones in Figure 3. Note, however, that the hysteresis is narrower in the noisy
than in the noise-free diagrams, since the values of H

i
, at which the forward and backward

bifurcations occur, have shifted to H
i
+0)32 and H

i
+0)27 respectively. As the noise

amplitude g is further increased, the hysteresis vanishes (Figure 4(b)). For noise amplitudes
of approximately g'0)01, the bifurcation cannot be distinguished clearly because, in the
sub-critical parameter region, the tool motion trajectory is driven frequently from one
attractor to the other. The threshold value of g+0)01 was found from numerical
experiments. It may be considered as a characteristic parameter which describes when the
e!ect of dynamic noise becomes overwhelming so that it masks the abrupt transition to



Figure 4. Dependence of X
1

amplitudes on the nominal chip thickness H
i
in the presence of dynamic noise with

amplitude (a) g"0)003 and (b) g"0)006; black dots*H
i
smoothly increased, grey dots*H

i
smoothly decreased.
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chatter. It is di$cult to compare directly the noise amplitudes in the model to those
observed in real cutting. Based on our experience with regenerative cutting, we suspect that
noise amplitudes in real cutting are lower than the equivalent threshold mentioned above,
since a bifurcation at the chatter onset can usually be distinguished.

We are at present not aware of experiments with non-regenerative cutting in which the
cutting parameters would be changed analogously to the above simulations. However,
dependences similar to the ones in Figure 4(b) have been obtained experimentally in
regenerative cutting [17]. An example of such an experimental diagram is presented in
Figure 5, where maxima of the cutting force amplitudes during turning are plotted against
the increasing chip width w, which is proportional to the parameter F

0
of the model used in

this study. In the diagram, the onset of chatter at w+0)6 mm is observed clearly as
a marked transition between two di!erent cutting regimes. The average amplitude of
cutting force oscillations is signi"cantly smaller in the chatter-free than in the chatter
regime. Wide scattering of the maxima, especially in the chatter regime, can be attributed in
part to the presence of measurement noise in the data, and to non-Gaussian distribution of



Figure 5. Experimental dependence of the cutting force F amplitudes on the increasing chip width w in
regenerative cutting (turning).
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dynamic noise. Although this diagram cannot be compared quantitatively to the
corresponding diagram in Figure 4(b), qualitative similarities between the two diagrams are
obvious. This con"rms that, in order to improve the modelling of cutting process dynamics,
stochastic models should be considered.

6. CONCLUSIONS

A non-linear model of non-regenerative cutting is analyzed. Chip thickness H
i
is selected

as the control parameter. When chip thickness is gradually increased, a stable "xed point
that represents chatter-free cutting loses its stability via a Hopf bifurcation to a limit cycle
that represents chatter. When chip thickness is gradually decreased, the bifurcation scenario
is repeated in the reverse order, such that a hysteresis is obtained. The appearance of
hysteresis reveals the sub-critical nature of the bifurcation corresponding to the chatter
onset. Upon introducing the dynamic noise into the system, the hysteresis becomes
narrower at small noise amplitudes, and vanishes when the noise amplitudes are increased
su$ciently. This con"rms the experimentally observed fact that, in the sub-critical
parameter region, random in#uences in the process can cause chatter onset although
chatter-free cutting is predicted by the stability analysis of the "xed point. Finally, due to the
lack of experimental results about non-regenerative cutting, the bifurcation diagram
obtained in regenerative cutting is compared qualitatively to the calculated noisy diagram.
Similar features regarding the onset of chatter are observed in both diagrams.

The model analyzed in this study consists of two linear oscillators which are coupled by
a non-linear driving term. Possible coupling of oscillators in the x and y directions, and
non-linear properties of the machine-tool assembly, which would be represented by
non-linear damping or restoring terms, are neglected for the sake of simplicity. Although
simpli"ed, the model nevertheless reproduces an experimentally observed phenomenon
very well. As there is still no widely accepted explanation for the causes of chatter onset in
non-regenerative cutting, our results indicate that (a) non-linear dependence of cutting force
on cutting velocity, and (b) friction between the tool and the cut material can cause the onset
of chatter. While non-linear properties of the machine-tool may have an important e!ect on
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cutting dynamics, they are not necessary for the chatter to occur. Similar results have been
obtained for the regenerative cutting, where a linear oscillator with non-linear regenerative
driving is su$cient to model the chatter onset remarkably well [4, 6].

Dynamic noise can have an important in#uence on the process dynamics, especially in
the vicinity of the bifurcation points [18]. Furthermore, noise can broaden a limit cycle
attractor, or distort a chaotic attractor to such an extent that, when analyzing time series
generated by stochastic processes, one might be misled into searching for a complicated
structure in a trivial, but noisy, attractor, and to overlook the "ngerprints of chaos in
a noisy chaotic attractor [19]. In cutting processes, there are various possible sources of
noise. Although incorporating noise into the model makes an analytical treatment di$cult
or impossible, it seems worthwhile to consider noise in numerical studies. In our study,
uncorrelated Gaussian distributed additive dynamic noise was used. Such a type of dynamic
noise may not be the most realistic in the case of cutting dynamics. Correlated
multiplicative noise in the driving term, i.e., the cutting force, would probably match the
conditions of real cutting better [15, 20]. However, for the dynamics of stochastic processes
described by the Langevin equation with uncorrelated Gaussian noise, some interesting
analytical results are available which have recently led to new methods for analysis of noisy
time series [19, 21].

The results of this study may be relevant not only to non-regenerative machining but also
to other mechanical processes in which sub-critical bifurcations take place. For example,
#utter of airplane wings seems to be an unfavourable phenomenon dynamically analogous
to chatter in machining [22].
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