1. Effectiveness of a new anti-cellulite cream is tested. On the first group of women the actual cream is applied while on the other, so called control group, placebo is applied. After one-month of therapy, reduction of thigh circumference at the desired location is measured. Data in mm is gathered in the table.

Cream	13	12	8	10	11	4	5	9
Placebo	8	2	6	7	5	9	0	3

It is estimated that the thigh circumference is normally distributed in both cases. Can we claim that the cream significantly influences the reduction of cellulite? Test means and standard deviations. R: Yes. t = 2.53, p = 0.024 and f = 1.06, p = 0.941

2. Machines A and B should produce tablets of equal mass. Several tablets produced by each of the machines are weighted and the results (in mg) are given in the following table:

Α	49.0	48.5	50.3	49.5	50.7	50.3		
В	50.6	48.8	51.4	50.6	51.1	49.4	49.2	50.8

It is assumed that the tablet mass is normally distributed for both machines. Can we claim that the distribution is the same on both machines? R: Yes. t = -1.05, p = 0.314 and f = 0.792, p = 0.825

NOTE: To solve the problems, tabulated normal, Student, χ^2 , and Snedecor probability distributions are required (Tables A.1–3 and A.5–8 in the textbook *Opis naključnih pojavov*).