Non-parametric hypothesis testing

Goodness-of-fit test: we do not know the distribution of population and the hypothesis involve the type of distribution. The null hypothesis states that the random variable X has a probability distribution $f_{0}(x)$ and the alternative hypothesis states that it is not:

$$
\begin{align*}
& \mathrm{H}_{0}: f(x)=f_{0}(x), \\
& \mathrm{H}_{1}: f(x) \neq f_{0}(x) . \tag{1}
\end{align*}
$$

The test procedure requires a random sample of n observations from the population. The observations are arranged in a frequency histogram, having r bins or class intervals with bin frequencies n_{i}. The probabilities p_{i} of X falling in i-th bin can be estimated by $p_{i}=n_{i} / n$. The frequencies n_{i} are then compared to the expected bin frequencies $n_{i_{0}}=p_{i_{0}} n$ which are calculated from the hypothesized probability distribution. The comparison is done using the following test statistics:

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{r} \frac{\left(n_{i}-n_{i_{0}}\right)^{2}}{n_{i_{0}}^{2}} n_{i_{0}}=\sum_{i=1}^{r} \frac{\left(n_{i}-n_{i_{0}}\right)^{2}}{n_{i_{0}}}=n \sum_{i=1}^{r} \frac{\left(p_{i}-p_{i_{0}}\right)^{2}}{p_{i_{0}}}=\left(\sum_{i=1}^{r} \frac{n_{i}^{2}}{n_{i_{0}}}\right)-n . \tag{2}
\end{equation*}
$$

The distribution of the test statistics χ^{2} is asimptotically approaching the χ_{r-l-1}^{2} distribution, where l is number of hypothesized distribution parameters which were estimated from the sample in order to calculate the frequencies $n_{i_{0}}$. For normal distribution $l=2$, for exponential and Poisson $l=1$, and for uniform distribution $l=0$. If n is large and $n_{i} \geq 5$ for each class interval, the distribution of the test statistics χ^{2} is very close to χ_{r-l-1}^{2} distribution. If the test statistics value exceeds the critical value $\chi_{r-l-1 ; \alpha}^{2}$, the H_{0} is rejected. To facilitate the calculation of test statistics value a table with columns $x_{i}, n_{i}, n_{i}^{2}, n_{i_{0}}=p_{i_{0}} n$ and $n_{i}^{2} / n_{i_{0}}$ is constructed. The test statistics value equals the sum of the values in the last column.

Independence test: the hypothesis involve (in)dependence of two random variables or influences X and Y whose values can be divided into r and c class intervals, respectively. From the sample of n observations, frequencies $n_{i j}$ are determined for all of the class intervals pairs $\left(x_{i}, y_{j}\right)$. The determined frequencies are gathered in a $r \times c$ contingency table:

		Y				
		y_{1}	y_{2}	\cdots	y_{c}	$n_{i \star}$
	x_{1}	n_{11}	n_{12}	\cdots	$n_{1 c}$	$n_{1 \star}$
	x_{2}	n_{21}	n_{22}	\cdots	$n_{2 c}$	$n_{2 \star}$
	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
	x_{r}	$n_{r 1}$	$n_{r 2}$	\cdots	$n_{r c}$	$n_{r \star}$
	$n_{\star j}$	$n_{\star 1}$	$n_{\star 2}$	\cdots	$n_{\star c}$	$n_{\star \star}=n$

The sign \star on the place of an index means a sum according to that index:

$$
\begin{equation*}
n_{i \star}=\sum_{j=1}^{c} n_{i j} \quad \text { and } \quad n_{\star j}=\sum_{i=1}^{r} n_{i j} . \tag{3}
\end{equation*}
$$

The null hypothesis states that the variables X and Y are independent, the alternative hypothesis states that they are not:

$$
\begin{array}{ll}
\mathrm{H}_{0}: p_{i j}=p_{i} \cdot p_{j}, & \text { for any pair }(i, j) \\
\mathrm{H}_{1}: p_{i j} \neq p_{i} \cdot p_{j}, & \text { for at least one pair }(i, j) . \tag{4}
\end{array}
$$

The expected joint probabilities $p_{i j_{0}}$ are calculated on the basis of H_{0} as products of the corresponding marginal probabilities: $p_{i j_{0}}=p_{i_{0}} p_{j_{0}}=n_{i \star} n_{\star j} / n^{2}$. The null hypothesis is tested using the following test statistics:

$$
\begin{equation*}
\chi^{2}=n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(p_{i j}-p_{i j_{0}}\right)^{2}}{p_{i j_{0}}}=n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{i j}-n_{i \star} n_{\star j} / n\right)^{2}}{n_{i \star} n_{\star j}}=n\left(\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{i j}^{2}}{n_{i \star} n_{\star j}}-1\right), \tag{5}
\end{equation*}
$$

The test statistics χ^{2} is $\chi_{(r-1)(c-1)}^{2}$ distributed. If the test statistics value exceeds the critical value $\chi_{(r-1)(c-1) ; \alpha}^{2}$, the H_{0} is rejected.

Homogeneity test: the hypothesis involve (in)homogeneity of v populations (groups) with respect to some criteria that has r different values. For each of the populations we have a sample of n_{i} observations, which are arranged into r class intervals according to the criteria. This way, the frequencies $n_{i j}$ are determined. They are gathered in a $v \times r$ contingency table:

		Criteria				$n_{i \star}=n_{i}$
		y_{1}	y_{2}	\ldots	y_{r}	
	x_{1}	n_{11}	n_{12}	\cdots	$n_{1 r}$	$n_{1 \star}=n_{1}$
	x_{2}	n_{21}	n_{22}	\ldots	$n_{2 r}$	$n_{2 \star}=n_{2}$
				!	\vdots	:
	x_{v}	$n_{v 1}$	$n_{v 2}$	\ldots	$n_{v r}$	$n_{r \star}=n_{v}$
	$n_{\star j}$	$n_{\star 1}$	$n_{\text {* } 2}$	\cdots	$n_{\star r}$	$n_{\star \star}=n$

The table is similar to the independence test contingency table, only that the frequencies n_{i} are determined before the test by sizes of the populations samples. The null hypothesis states that the populations are homogeneous with respect to the criteria, the alternative hypothesis states that they are not:

$$
\begin{align*}
\mathrm{H}_{0}: p_{1 j}=p_{2 j}=\cdots=p_{v j}=p_{\star j}, & \text { for any } j \\
\mathrm{H}_{1}: p_{i j} \neq p_{k j}, & \text { for at least one combination of }(i, j, k) . \tag{6}
\end{align*}
$$

The expected probability for each value of the criteria is estimated by $p_{\star j_{0}}=n_{\star j} / n$. The expected $p_{i j_{0}}$ probability values are then $p_{i j_{0}}=n_{i} p_{\star j_{0}} / n=n_{i \star} n_{\star j} / n^{2}$. Since the estimator of $p_{i j_{0}}$ is the same as in the independency test, the test statistics is also the same:

$$
\begin{equation*}
\chi^{2}=n \sum_{i=1}^{v} \sum_{j=1}^{r} \frac{\left(p_{i j}-p_{i j_{0}}\right)^{2}}{p_{i j_{0}}}=\sum_{i=1}^{v} \sum_{j=1}^{r} \frac{\left(n_{i j}-n_{i \star} \cdot n_{\star j} / n\right)^{2}}{n_{i \star} \cdot n_{\star j} / n}=n\left(\sum_{i=1}^{v} \sum_{j=1}^{r} \frac{n_{i j}^{2}}{n_{i \star} n_{\star j}}-1\right), \tag{7}
\end{equation*}
$$

which is $\chi_{(v-1)(r-1)}^{2}$ distributed. If the test statistics value exceeds the critical value $\chi_{(v-1)(r-1) ; \alpha}^{2}$, the H_{0} is rejected.

