Parametric hypothesis testing

Statistical hypothesis is a statement about some parameter or probability distribution of one or more populations. When the hypothesis is about a parameter it is called parametric, when it is about a probability distribution it is called non-parametric. The hypothesis testing is the decision-making procedure about the hypothesis. In this set the parametric hypothesis testing is discussed.
The statement under test is called the null hypothesis $\mathrm{H}_{0}()$ and the contradictory statement is called the alternative hypothesis $\mathrm{H}_{1}()$. The null hypothesis always states that a parameter (e.g. population mean) is equal to some value, e.g.:

$$
\begin{equation*}
\mathrm{H}_{0}(m=20) . \tag{1}
\end{equation*}
$$

The alternative hypothesis states that the parameter is either non-equal (two-sided alternative hypothesis), less than (left one-sided) or greather than (right one-sided alternative hypothesis) that value, e.g.:

$$
\begin{equation*}
\mathrm{H}_{1}(m \neq 20) \quad \text { or } \quad \mathrm{H}_{1}(m<20) \quad \text { or } \quad \mathrm{H}_{1}(m>20) . \tag{2}
\end{equation*}
$$

A hypothesis testing procedure consists of eight steps:

1. From the problem context, identify the parameter of interest.
2. State the null hypothesis, $\mathrm{H}_{0}()$.
3. Specify an appropriate alternative hypothesis, $\mathrm{H}_{1}()$. It is either two-sided or left/right one-sided.
4. Choose a significance level α. Usually, $\alpha=0.05$ or 0.01 .
5. Determine an appropriate test statistic.
6. State the rejection region for the statistic.
7. Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute that value.
8. Decide whether or not $\mathrm{H}_{0}()$ should be rejected and report that in the problem context.
in testing any statistical hypothesis, four different situations determine whether the final decision is correct or in error:

	$\mathrm{H}_{0}()$ is true	$\mathrm{H}_{0}()$ is false
$\mathrm{H}_{0}()$ is rejected	type I error	no error
$\mathrm{H}_{0}()$ is accepted	no error	type II error

The type I error is made when a true hypothesis is rejected. The probability of making a type I error is equal to significance level α and is chosen in advance:

$$
\begin{equation*}
P(\text { type I error })=\alpha \tag{3}
\end{equation*}
$$

The type II error is made when a false hypothesis is not rejected. The probability of making a type II error is denoted by β and cannot be chosen in advance since it depends on the properties of the tested population.

$$
\begin{equation*}
P(\text { type II error })=\beta . \tag{4}
\end{equation*}
$$

Hypothesis test on the mean of a) normally distributed population with known variance and any value of sample size n or b) any population distribution with unknown variance and $n>30$, where σ^{2} is estimated by S^{2} :

H_{0}	H_{1}	test statistics	rejection region for H_{0}
$m=m_{0}$	$m<m_{0}$		$z<-z_{\alpha}$
	$m \neq m_{0}$	$Z=\frac{\langle X\rangle-m_{0}}{\sigma / \sqrt{n}}$	$z<-z_{\alpha / 2} \cup z>z_{\alpha / 2}$
	$m>m_{0}$		$z>z_{\alpha}$

Hypothesis test on the mean of normally distributed population with unknown variance and $n<30$:

H_{0}	H_{1}	test statistics	rejection region for H_{0}
$m=m_{0}$	$m<m_{0}$		$t<-t_{n-1 ; \alpha}$
	$m \neq m_{0}$	$T=\frac{\langle X\rangle-m_{0}}{S / \sqrt{n}}$	$t<-t_{n-1 ; \alpha / 2} \cup t>t_{n-1 ; \alpha / 2}$
	$m>m_{0}$		$t>t_{n-1 ; \alpha}$

Hypothesis test on the variance of normally distributed population:

H_{0}	H_{1}	test statistics	rejection region for H_{0}
$\sigma^{2}=\sigma_{0}^{2}$	$\sigma^{2}<\sigma_{0}^{2}$		$\chi^{2} \neq \sigma_{0}^{2}$
	$\chi^{2}>\chi^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}$	$\chi_{n-1 ; 1-\alpha}^{2}<\chi_{n-1 ; 1-\alpha / 2}^{2} \cup \chi^{2}>\chi_{n-1 ; \alpha / 2}^{2}$	
		$\chi^{2}>\chi_{n-1 ; \alpha}^{2}$	

Hypothesis test on the proportion of the population if the binomial distribution can be approximated by a normal:

H_{0}	H_{1}	test statistics	rejection region for H_{0}
$p=p_{0}$	$p<p_{0}$		$z<-z_{\alpha}$
	$p \neq p_{0}$	$Z=\frac{p-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}$	$z<-z_{\alpha / 2} \cup z>z_{\alpha / 2}$
	$p>p_{0}$		$z>z_{\alpha}$

Hypothesis test on the sum (difference) of the means of a) normally distributed populations with known variances and any n_{1} and n_{2} or b) any population distributions with unknown variances and $n_{1}>30, n_{2}>30$ where it is estimated $\left.\sigma_{1}^{2}=S_{1}^{2}, \sigma_{2}^{2}=S_{2}^{2}\right)$:

H_{0}	H_{1}	test statistics	rejection region for H_{0}
$m_{1} \pm m_{2}=\Delta_{0}$	$m_{1} \pm m_{2}<\Delta_{0}$	$m_{1} \pm m_{2} \neq \Delta_{0}$	$Z=\frac{\left[\left(\left\langle X_{1}\right\rangle \pm\left\langle X_{2}\right\rangle\right)-\Delta_{0}\right]}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}$

Hypothesis test on the sum (difference) of the means of normally distributed populations with unknown, but similar, variances and any n_{1}, n_{2} :

H_{0}	H_{1}	test statistics	rejection region for H_{0}
$m_{1} \pm m_{2}=\Delta_{0}$	$m_{1} \pm m_{2}<\Delta_{0}$		$t<-t_{n_{1}+n_{2}-2 ; \alpha}$
	$m_{1} \pm m_{2} \neq \Delta_{0}$	$T=\frac{\left[\left(\left\langle X_{1}\right\rangle \pm\left\langle X_{2}\right\rangle\right)-\Delta_{0}\right]}{S_{p} \sqrt{1 / n_{1}+1 / n_{2}}}$	$t<-t_{n_{1}+n_{2}-2 ; \alpha / 2} \cup t>t_{n_{1}+n_{2}-2 ; \alpha / 2}$
	$m_{1} \pm m_{2}>\Delta_{0}$	$S_{p}^{2}=\left(\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right) /\left(n_{1}+n_{2}-2\right)$	$t>t_{n_{1}+n_{2}-2 ; \alpha}$

Hypothesis test on the sum (difference) of the proportion of the population, if the binomial distributions can be approximated by normal:

H_{0}	H_{1}	test statistics	rejection region for H_{0}
$p_{1} \pm p_{2}=\Delta_{0}$	$p_{1} \pm p_{2}<\Delta_{0}$		
	$p_{1} \pm p_{2} \neq \Delta_{0}$	$Z=\frac{\left(p_{1} \pm p_{2}\right)-\Delta_{0}}{\sqrt{p_{1}\left(1-p_{1}\right) / n_{1}+p_{2}\left(1-p_{2}\right) / n_{2}}}$	$z<-z_{\alpha / 2} \cup z>z_{\alpha / 2}$
	$p_{1} \pm p_{2}>\Delta_{0}$		$z>z_{\alpha}$

Hypothesis test on the variance ratio of normally distributed populations:

H_{0}	H_{1}	test statistics	rejection region for H_{0}
	$\sigma_{1}^{2} / \sigma_{2}^{2}<\Delta_{0}$		$f<1 / f_{n_{2}-1, n_{1}-1 ; \alpha}$
$\sigma_{1}^{2} / \sigma_{2}^{2}=\Delta_{0}$	$\sigma_{1}^{2} / \sigma_{2}^{2} \neq \Delta_{0}$	$F=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}$	$f<1 / f_{n_{2}-1, n_{1}-1 ; \alpha / 2 \cup f>f_{n_{1}-1, n_{2}-1 ; \alpha / 2}}$
	$\sigma_{1}^{2} / \sigma_{2}^{2}>\Delta_{0}$		$f>f_{n_{1}-1, n_{2}-1 ; \alpha}$

