Parametric hypothesis testing

Statistical hypothesis is a statement about some parameter or probability distribution of one or more populations. When the hypothesis is about a parameter it is called *parametric*, when it is about a probability distribution it is called *non-parametric*. The hypothesis testing is the decision-making procedure about the hypothesis. In this set the parametric hypothesis testing is discussed.

The statement under test is called the *null hypothesis* $H_0()$ and the contradictory statement is called the *alternative hypothesis* $H_1()$. The null hypothesis always states that a parameter (e.g. population mean) is equal to some value, e.g.:

$$H_0(m=20)$$
. (1)

The alternative hypothesis states that the parameter is either non-equal (two-sided alternative hypothesis), less than (left one-sided) or greather than (right one-sided alternative hypothesis) that value, e.g.:

$$H_1(m \neq 20)$$
 or $H_1(m < 20)$ or $H_1(m > 20)$. (2)

A hypothesis testing procedure consists of eight steps:

- 1. From the problem context, identify the parameter of interest.
- 2. State the null hypothesis, $H_0()$.
- 3. Specify an appropriate alternative hypothesis, $H_1()$. It is either two-sided or left/right one-sided.
- 4. Choose a significance level α . Usually, $\alpha = 0.05$ or 0.01.
- 5. Determine an appropriate test statistic.
- 6. State the rejection region for the statistic.
- 7. Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute that value.
- 8. Decide whether or not $H_0()$ should be rejected and report that in the problem context.

in testing any statistical hypothesis, four different situations determine whether the final decision is correct or in error:

	$H_0()$ is true	$H_0()$ is false
$H_0()$ is rejected	type I error	no error
$H_0()$ is accepted	no error	type II error

The **type I error** is made when a true hypothesis is rejected. The probability of making a type I error is equal to significance level α and is chosen in advance:

$$P(\text{type I error}) = \alpha. \tag{3}$$

The **type II error** is made when a false hypothesis is not rejected. The probability of making a type II error is denoted by β and cannot be chosen in advance since it depends on the properties of the tested population.

$$P(\text{type II error}) = \beta.$$
(4)

Hypothesis test on the **mean** of a) normally distributed population with known variance and any value of sample size n or b) any population distribution with unknown variance and n > 30, where σ^2 is estimated by S^2 :

H ₀	H_1	test statistics	rejection region for H_0
	$m < m_0$		$z < -z_{lpha}$
$m = m_0$	$m \neq m_0$	$Z = \frac{\langle X \rangle - m_0}{\sigma / \sqrt{n}}$	$z < -z_{\alpha/2} \cup z > z_{\alpha/2}$
	$m > m_0$		$z>z_{lpha}$

Hypothesis test on the **mean** of normally distributed population with unknown variance and n < 30:

H_0	H_1	test statistics	rejection region for H_0
	$m < m_0$		$t < -t_{n-1;\alpha}$
$m = m_0$	$m \neq m_0$	$T = \frac{\langle X \rangle - m_0}{S/\sqrt{n}}$	$t < -t_{n-1;\alpha/2} \cup t > t_{n-1;\alpha/2}$
	$m > m_0$		$t > t_{n-1;\alpha}$

Hypothesis test on the **variance** of normally distributed population:

H ₀	H_1	test statistics	rejection region for H_0
$\sigma^2 = \sigma_0^2$	$\sigma^{2} < \sigma_{0}^{2}$ $\sigma^{2} \neq \sigma_{0}^{2}$ $\sigma^{2} > \sigma_{0}^{2}$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$ \begin{array}{c} \chi^2 < \chi^2_{n-1;1-\alpha} \\ \chi^2 < \chi^2_{n-1;1-\alpha/2} \cup \chi^2 > \chi^2_{n-1;\alpha/2} \\ \chi^2 > \chi^2_{n-1;\alpha} \end{array} $

Hypothesis test on the **proportion of the population** if the binomial distribution can be approximated by a normal:

H_0	H_1	test statistics	rejection region for H_0
$p = p_0$	$p < p_0$ $p \neq p_0$ $p > p_0$	$Z = \frac{p - p_0}{\sqrt{p_0(1 - p_0)/n}}$	$z < -z_{\alpha}$ $z < -z_{\alpha/2} \cup z > z_{\alpha/2}$ $z > z_{\alpha}$

Hypothesis test on the sum (difference) of the means of a) normally distributed populations with known variances and any n_1 and n_2 or b) any population distributions with unknown variances and $n_1 > 30$, $n_2 > 30$ where it is estimated $\sigma_1^2 = S_1^2$, $\sigma_2^2 = S_2^2$):

H ₀	H_1	test statistics	rejection region for H_0
	$m_1 \pm m_2 < \Delta_0$	$[(/\mathbf{Y}_{1}) \pm /\mathbf{Y}_{2})) \wedge \mathbf{z}_{1}]$	$z < -z_{lpha}$
$m_1 \pm m_2 = \Delta_0$	$m_1 \pm m_2 \neq \Delta_0$	$Z = \frac{((\sqrt{x_1/2} \sqrt{x_2/2}) - \Delta_0)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$	$z < -z_{\alpha/2} \cup z > z_{\alpha/2}$
	$m_1 \pm m_2 > \Delta_0$	V	$z > z_{lpha}$

Hypothesis test on the sum (difference) of the means of normally distributed populations with unknown, but similar, variances and any n_1 , n_2 :

H_0	H_1	test statistics	rejection region for H_0
$m_1 \pm m_2 = \Delta_0$	$m_1 \pm m_2 < \Delta_0$ $m_1 \pm m_2 \neq \Delta_0$ $m_1 \pm m_2 > \Delta_0$	$T = \frac{\left[\left(\langle X_1 \rangle \pm \langle X_2 \rangle\right) - \Delta_0\right]}{S_p \sqrt{1/n_1 + 1/n_2}}$ $S_p^2 = \left((n_1 - 1)S_1^2 + (n_2 - 1)S_2^2\right) / (n_1 + n_2 - 2)$	$\begin{split} t &< -t_{n_1+n_2-2;\alpha} \\ t &< -t_{n_1+n_2-2;\alpha/2} \cup t > t_{n_1+n_2-2;\alpha/2} \\ t &> t_{n_1+n_2-2;\alpha} \end{split}$

Hypothesis test on the sum (difference) of the proportion of the population, if the binomial distributions can be approximated by normal:

H_0	H_1	test statistics	rejection region for H_0
$p_1 \pm p_2 = \Delta_0$	$p_1 \pm p_2 < \Delta_0$ $p_1 \pm p_2 \neq \Delta_0$ $p_1 \pm p_2 > \Delta_0$	$Z = \frac{(p_1 \pm p_2) - \Delta_0}{\sqrt{p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2}}$	$z < -z_{\alpha}$ $z < -z_{\alpha/2} \cup z > z_{\alpha/2}$ $z > z_{\alpha}$

Hypothesis test on the **variance ratio** of normally distributed populations:

H_0	H_1	test statistics	rejection region for H_0
$\sigma_1^2/\sigma_2^2 = \Delta_0$	$\begin{aligned} \sigma_1^2/\sigma_2^2 &< \Delta_0 \\ \sigma_1^2/\sigma_2^2 &\neq \Delta_0 \\ \sigma_1^2/\sigma_2^2 &> \Delta_0 \end{aligned}$	$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2}$	$\begin{aligned} & f < 1/f_{n_2-1,n_1-1;\alpha} \\ & f < 1/f_{n_2-1,n_1-1;\alpha/2} \cup f > f_{n_1-1,n_2-1;\alpha/2} \\ & f > f_{n_1-1,n_2-1;\alpha} \end{aligned}$