Concepts of parameter estimation - confidence interval estimation

In confidence interval parameter estimation based on the sample $\mathbf{V} = (X_1, X_2, ..., X_n)$ a confidence interval [l, u] is determined for which it is trusted with a confidence coefficient $(1 - \alpha)$ or a risk coefficient α that it contains the true value of the estimated parameter θ :

$$P\left(l \le \theta \le u\right) = 1 - \alpha \,. \tag{1}$$

Confidence intervals can be two-sided or left and right one-sided:

$$l \le \theta \le u \quad \text{or} \quad l \le \theta \quad \text{and} \quad \theta \le u \,.$$
 (2)

Error of interval estimation is $|l - \theta|$ or $|u - \theta|$.

When the distribution of X_i in the sample is normal with known variance σ^2 , the two-sided confidence interval on **mean** m of this distribution is:

$$\langle x \rangle - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < m < \langle x \rangle + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$
 (3)

It is taken into account that the random variable

$$Z = \frac{\langle X \rangle - m}{\sigma / \sqrt{n}} \tag{4}$$

has a normal distribution. The value $z_{\alpha/2}$ is determined by $\Phi(z_{\alpha/2}) = (1 - \alpha)/2$.

When the distribution of X_i in the sample is arbitrary with unknown variance σ^2 and the sample is large (n > 30), the two-sided confidence interval on **mean** m of this distribution is:

$$\langle x \rangle - z_{\alpha/2} \frac{s}{\sqrt{n}} < m < \langle x \rangle + z_{\alpha/2} \frac{s}{\sqrt{n}},$$
(5)

where the unknown variance σ^2 is replaced by the corrected sample variance S^2 which is a random variable. In the above equation its realisation s^2 is used which is determined from the sample. It is taken into account that the random variable

$$Z = \frac{\langle X \rangle - m}{S/\sqrt{n}} \tag{6}$$

has a normal distribution based on the central limit theorem for large n. The value $z_{\alpha/2}$ is determined as above.

When the distribution of X_i in the sample is normal with unknown variance σ^2 and the sample is small (n < 30), the two-sided confidence interval on **mean** m of this distribution is:

$$\langle x \rangle - t_{n-1;\alpha/2} \frac{s}{\sqrt{n}} < m < \langle x \rangle + t_{n-1;\alpha/2} \frac{s}{\sqrt{n}}, \tag{7}$$

where the unknown variance σ^2 is replaced by the corrected sample variance S^2 . It is taken into account that the random variable

$$T = \frac{\langle X \rangle - m}{S/\sqrt{n}} \tag{8}$$

has a Student (or "t") distribution with n-1 degrees of freedom. The value $t_{n-1;\alpha/2}$ is found in Table A.2.

When the distribution of X_i in the sample is *normal*, the two-sided confidence interval on **variance** σ^2 of this distribution is:

$$\frac{(n-1)s^2}{\chi^2_{n-1;\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1;1-\alpha/2}}.$$
(9)

It is taken into account that the random variable

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$
(10)

has a χ^2 distribution with n-1 degrees of freedom. The values $\chi^2_{n-1;\alpha/2}$ and $\chi^2_{n-1;1-\alpha/2}$ are found in Table A.3.

The approximate two-sided confidence interval on **proportion** p of the population having a *large* sample is:

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
(11)$$

Here it is assumed that the binomial distribution can be approximated by a normal distribution.

The two-sided confidence interval on sum (difference) of the means m_1 and m_2 of the normally distributed populations with known variances is:

$$\langle x_1 \rangle \pm \langle x_2 \rangle - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < m_1 \pm m_2 < \langle x_1 \rangle \pm \langle x_2 \rangle + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$
 (12)

If the populations have arbitrary distributions with unknown variances and the samples are large, the above confidence interval is used with variances σ_1^2 and σ_2^2 replaced by sample variances s_1^2 and s_2^2 .

The two-sided confidence interval on sum (difference) of the means m_1 and m_2 of the normally distributed populations with unknown variances and having small samples is:

$$\langle x_1 \rangle \pm \langle x_2 \rangle - t_{n_1 + n_2 - 2; \alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < m_1 \pm m_2 < \langle x_1 \rangle \pm \langle x_2 \rangle + t_{n_1 + n_2 - 2; \alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \quad (13)$$

where s_p is a realisation of the combined sample standard deviation S_p :

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$
(14)

The approximate two-sided confidence interval on sum (difference) of the proportions p_1 and p_2 of the populations when the samples are large is:

$$\hat{p_1} \pm \hat{p_2} - z_{\alpha/2} \sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}} < p_1 \pm p_2 < \hat{p_1} \pm \hat{p_2} + z_{\alpha/2} \sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}}.$$
 (15)

Here it is assumed that the binomial distributions can be approximated by normal distributions.