1. Synthetic fibers used to make carpets have normally distributed tensile strength with an average of 520 kPa and a standard deviation of 25 kPa .
(a) What is the probability that the average tensile strength of a random sample of six fibers is greater than 522 kPa ? R: $P=0.422$
(b) What is the probability of the first problem case if the sample size is increased from six to 50 fibers? R: $P=0.286$
2. Using the method of moments find the estimator for the parameter λ of the exponential probability distribution displaced for $x_{0}: f(x)=\lambda \mathrm{e}^{-\lambda\left(x-x_{0}\right)}$. $\mathrm{R}: \lambda=1 /\left(\langle X\rangle-x_{0}\right)$
3. Using the method of maximum likelihood find the estimator for the parameter λ of the Poisson probability distribution. R: $\lambda=\langle X\rangle$
4. Using the method of maximum likelihood find the estimator for the parameter q of the probability distribution with a probability density function $f(x)=(q+1) x^{q}$ for $0 \leq x \leq 1$. R: $q=-1-n / \sum_{i}^{n} \log X_{i}$
5. Flow time of certain product has been measured in a workshop for ten selected pieces. The resulting values were (in minutes): $17,21,14,23,20,24,19,19,25$ and 18 . It is assumed that the flow time of the studied product is normally distributed. Determine point estimators of mean and standard deviation of the flow time. R: $\mu=20 \mathrm{~min}, \sigma=3.37 \mathrm{~min}$
