FORMULAE USED FOR EXERCISES IN RANDOM PHENOMENA COURSE - 4TH SET

Functions of random variables: Suppose that X is a continuous random variable with probability
distribution fx(x) and that the random variable Y is defined by a function Y = ¢g(X). Then, the
probability distribution fy (y) can be calculated by using the inverse function X = h(Y) = g~ (Y):
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The above equation is valid for a monotonic function g(X). If g(X) is not monotonic, it should be
divided on k piecewise monotonic parts g;(X) with the corresponding inverses h;(Y):
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Scalar function of vector random variable: Suppose that X and Y are two continuous random
variables with joint probability distribution fxy (x,y) and that random variable Z is defined by Z =
g9(X,Y). Then, the calculation of the probability distribution fz(z) in general depends on g(X,Y).
In the most simple case with Z = X + Y the calculation is:
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Raw moment of the k-th order is defined for discrete and continuous random variables by:
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Central moment of the k-th order is defined for discrete and continuous random variables by:
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The raw moment of the first order m; is named mean m, the central moment of the second order po
is named variance Var [X]. The variance can also be expressed by:
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Raw and central moments of a vector random variable are defined in similar way. For a two-dimensional
continuous vector random variable the definitions are:
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Mostly used are the first raw moment E[XY] named correlation Cor[X,Y] and the first central
moment E [(X —mx)(Y —my)| named covariance Cov [X,Y]. They are related by:

Cov [X,Y] = Cor [X,Y] —mxmy . (8)



