Functions of random variables: Suppose that X is a continuous random variable with probability distribution $f_{X}(x)$ and that the random variable Y is defined by a function $Y=g(X)$. Then, the probability distribution $f_{Y}(y)$ can be calculated by using the inverse function $X=h(Y)=g^{-1}(Y)$:

$$
\begin{equation*}
f_{Y}(y)=f_{X}(h(y))\left|\frac{\mathrm{d} h(y)}{\mathrm{d} y}\right| . \tag{1}
\end{equation*}
$$

The above equation is valid for a monotonic function $g(X)$. If $g(X)$ is not monotonic, it should be divided on k piecewise monotonic parts $g_{i}(X)$ with the corresponding inverses $h_{i}(Y)$:

$$
\begin{equation*}
f_{Y}(y)=\sum_{i=1}^{k} f_{X}\left(h_{i}(y)\right)\left|\frac{\mathrm{d} h_{i}(y)}{\mathrm{d} y}\right| . \tag{2}
\end{equation*}
$$

Scalar function of vector random variable: Suppose that X and Y are two continuous random variables with joint probability distribution $f_{X Y}(x, y)$ and that random variable Z is defined by $Z=$ $g(X, Y)$. Then, the calculation of the probability distribution $f_{Z}(z)$ in general depends on $g(X, Y)$. In the most simple case with $Z=X+Y$ the calculation is:

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X Y}(x, z-x) \mathrm{d} x \stackrel{(\text { if } X \text { and } Y \text { independent })}{=} \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x . \tag{3}
\end{equation*}
$$

Raw moment of the k-th order is defined for discrete and continuous random variables by:

$$
\begin{align*}
& m_{k}=\mathrm{E}\left[X^{k}\right]=\sum_{i=1}^{n} x_{i}^{k} P\left(X=x_{i}\right), \tag{4}\\
& m_{k}=\mathrm{E}\left[X^{k}\right]=\int_{-\infty}^{\infty} x^{k} f(x) \mathrm{d} x
\end{align*}
$$

Central moment of the k-th order is defined for discrete and continuous random variables by:

$$
\begin{align*}
& \mu_{k}=\mathrm{E}\left[(X-\mathrm{E}[X])^{k}\right]=\sum_{i=1}^{n}\left(x_{i}-\mathrm{E}[X]\right)^{k} P\left(X=x_{i}\right), \tag{5}\\
& \mu_{k}=\mathrm{E}\left[(X-\mathrm{E}[X])^{k}\right]=\int_{-\infty}^{\infty}(x-\mathrm{E}[X])^{k} f(x) \mathrm{d} x .
\end{align*}
$$

The raw moment of the first order m_{1} is named mean m, the central moment of the second order μ_{2} is named variance $\operatorname{Var}[X]$. The variance can also be expressed by:

$$
\begin{equation*}
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} . \tag{6}
\end{equation*}
$$

Raw and central moments of a vector random variable are defined in similar way. For a two-dimensional continuous vector random variable the definitions are:

$$
\begin{align*}
\mathrm{E}\left[X^{j} Y^{k}\right] & =\iint x^{j} y^{k} f_{X Y}(x, y) \mathrm{d} x \mathrm{~d} y \tag{7}\\
\mathrm{E}\left[(X-\mathrm{E}[X])^{j}(Y-\mathrm{E}[Y])^{k}\right] & =\iint(x-\mathrm{E}[X])^{j}(y-\mathrm{E}[Y])^{k} f_{X Y}(x, y) \mathrm{d} x \mathrm{~d} y
\end{align*}
$$

Mostly used are the first raw moment $\mathrm{E}[X Y]$ named correlation $\operatorname{Cor}[X, Y]$ and the first central moment $\mathrm{E}\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right]$ named covariance $\operatorname{Cov}[X, Y]$. They are related by:

$$
\begin{equation*}
\operatorname{Cov}[X, Y]=\operatorname{Cor}[X, Y]-m_{X} m_{Y} \tag{8}
\end{equation*}
$$

