A probability density function f_{X} of a continuous random variable X is such that:

$$
\begin{align*}
f_{X}(x) & \geq 0 \\
\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x & =1 \tag{1}\\
P(a \leq X \leq b) & =\int_{a}^{b} f_{X}(x) \mathrm{d} x
\end{align*}
$$

The corresponding cumulative distribution function F_{X} of a continuous random variable X is:

$$
\begin{equation*}
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(u) \mathrm{d} u \quad \text { for } \quad-\infty<x<\infty . \tag{2}
\end{equation*}
$$

Given F_{X}, the f_{X} can be calculated by:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} F_{X}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{-\infty}^{x} f_{X}(u) \mathrm{d} u=f_{X}(x) \tag{3}
\end{equation*}
$$

A continuous uniform random variable X over the interval $[a, b]$ has the following probability density function $f(x)$ and cumulative distribution function $F(x)$:

$$
\begin{equation*}
f(x)=\frac{1}{b-a}, \quad F(x)=\int_{a}^{x} f(u) \mathrm{d} u=\frac{x-a}{b-a}, \quad \text { for } \quad a \leq x \leq b . \tag{4}
\end{equation*}
$$

An exponential random variable X with the mean $1 / \lambda>0$ has the following probability density function $f(x)$ and cumulative distribution function $F(x)$:

$$
\begin{equation*}
f(x)=\lambda \mathrm{e}^{-\lambda x}, \quad F(x)=\int_{0}^{x} f(u) \mathrm{d} u=1-\mathrm{e}^{-\lambda x}, \quad \text { for } \quad x \geq 0 \tag{5}
\end{equation*}
$$

A normal (Gauss) random variable X with the mean $m \in \mathbb{R}$ and the standard deviation $\sigma>0$ has the following probability density function $f(x)$ and cumulative distribution function $F(x)$:

$$
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}, \quad F(x)=\int_{-\infty}^{x} f(u) \mathrm{d} u=0.5+\Phi\left(\frac{x-m}{\sigma}\right), \quad \text { for } \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

Here, $\Phi\left(\frac{x-m}{\sigma}\right)=\Phi(z)$ is the Laplace function:

$$
\begin{equation*}
\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{z} \mathrm{e}^{-\frac{u^{2}}{2}} \mathrm{~d} u \tag{7}
\end{equation*}
$$

which is tabulated for different values of z in the table A. 1 of the textbook Opis naključnih pojavov. The Laplace function has the following properties:

$$
\begin{equation*}
\Phi(\infty)=0.5 \quad \text { and } \quad \Phi(-z)=-\Phi(z) \tag{8}
\end{equation*}
$$

In Equation (6) a standard normal random variable Z has been introduced:

$$
\begin{equation*}
Z=\frac{X-m}{\sigma} \tag{9}
\end{equation*}
$$

The probability density function of a normal random variable X is usually shortly denoted by $\mathcal{N}(x ; m, \sigma)$. The probability density function of a standard normal random variable Z is $\mathcal{N}(z ; 0,1)$ and its probabilities can be calculated using the table A. 1 of the textbook Opis naključnih pojavov. The transformation (9) is referred to as standardizing.

When the parameter n of a binomial distribution is large and the probability of a success is $p \approx 0.5$, the binomial distribution can be approximated by a normal distribution by using:

$$
\begin{equation*}
m=n p \quad \text { and } \quad \sigma=\sqrt{n p(1-p)} . \tag{10}
\end{equation*}
$$

By an alternative criteria the approximation is good when $n p>5$ and $n(1-p)>5$.
The normal distribution can be used as an approximation of the Poisson distribution when $\lambda>5$. The parameters of a normal distribution are then:

$$
\begin{equation*}
m=\lambda \quad \text { and } \quad \sigma=\sqrt{\lambda} . \tag{11}
\end{equation*}
$$

Addition (subtraction) of two independent normal random variables X_{1} and X_{2} with the probability density functions $\mathcal{N}\left(x_{1} ; m_{1}, \sigma_{1}\right)$ and $\mathcal{N}\left(x_{2} ; m_{2}, \sigma_{2}\right)$ results in a normal random variable $Y=X_{1} \pm X_{2}$ with the probability density of:

$$
\begin{equation*}
\mathcal{N}\left(y ; m_{y}, \sigma_{y}\right), \quad \text { where } \quad m_{y}=m_{1} \pm m_{2} \quad \text { and } \quad \sigma_{y}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{12}
\end{equation*}
$$

