FORMULAE USED FOR EXERCISES IN RANDOM PHENOMENA COURSE - 3RD SET

A probability density function fx of a continuous random variable X is such that:
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The corresponding cumulative distribution function Fx of a continuous random variable X is:
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Given F'x, the fx can be calculated by:
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A continuous uniform random variable X over the interval [a,b] has the following probability
density function f(z) and cumulative distribution function F'(z):

Fla) = — F(x):/wf(u)du:x_a for a<az<b. (4)
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An exponential random variable X with the mean 1/A > 0 has the following probability density
function f(z) and cumulative distribution function F(x):

f(z) =Xe ™, F(:):)—/xf(u) du=1—e", for x>0. (5)
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A normal (Gauss) random variable X with the mean m € R and the standard deviation o > 0
has the following probability density function f(z) and cumulative distribution function F'(x):
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Here, ® (=) = ® () is the Laplace function:
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which is tabulated for different values of z in the table A.1 of the textbook Opis nakljucnih pojavov.
The Laplace function has the following properties:

®(c0) =0.5 and O(—2)=—-(z2). (8)
In Equation (6) a standard normal random variable Z has been introduced:
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The probability density function of a normal random variable X is usually shortly denoted by N (z;m, o).
The probability density function of a standard normal random variable Z is N'(z;0, 1) and its probabil-
ities can be calculated using the table A.1 of the textbook Opis nakljuénih pojavov. The transformation
(9) is referred to as standardizing.

When the parameter n of a binomial distribution is large and the probability of a success is p = 0.5,
the binomial distribution can be approximated by a normal distribution by using:

m=mnp and o=+/np(l—p). (10)

By an alternative criteria the approximation is good when np > 5 and n(1 —p) > 5.

The normal distribution can be used as an approximation of the Poisson distribution when A > 5.
The parameters of a normal distribution are then:

m=2X\  and o=v\. (11)

Addition (subtraction) of two independent normal random variables X; and Xs with the probability
density functions N (z1;mq,01) and N (x9;ma, 09) results in a normal random variable Y = X7 + X5
with the probability density of:

N (y;my, 0y), where my = mi £ ma and oy =1/0%+03. (12)



