Probability mass function f_{X} of a discrete random variable X with possible values $\left\{x_{i}\right\}$ is defined by:

$$
\begin{align*}
f_{X}\left(x_{i}\right) & =P\left(X=x_{i}\right)=p\left(x_{i}\right), \\
f_{X}\left(x_{i}\right) & \geq 0, \tag{1}\\
\sum_{x_{i} \in S_{X}} f_{X}\left(x_{i}\right) & =1 .
\end{align*}
$$

It satisfies also the following property:

$$
\begin{equation*}
P(a \leq X \leq b)=\sum_{x_{i} \in[a, b]} f_{X}\left(x_{i}\right) . \tag{2}
\end{equation*}
$$

The cumulative distribution function F_{X} of a discrete random variable X is defined by:

$$
\begin{equation*}
F_{X}\left(x_{i}\right)=P\left(X \leq x_{i}\right)=\sum_{x_{j} \leq x_{i}} f_{X}\left(x_{j}\right) \tag{3}
\end{equation*}
$$

The empirical mean value of a discrete random variable X, determined from N repetitions of the random experiment:

$$
\begin{equation*}
\langle X\rangle=\sum_{k} x_{k} \frac{N_{k}}{N} \tag{4}
\end{equation*}
$$

The statistical mean of a discrete random variable X :

$$
\begin{equation*}
\mathrm{E}[X]=\sum_{k} x_{k} f_{X}\left(x_{k}\right) \tag{5}
\end{equation*}
$$

The variance of a discrete random variable X :

$$
\begin{equation*}
\sigma^{2}=\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\sum_{k}\left(x_{k}-\mathrm{E}[X]\right)^{2} f_{X}\left(x_{k}\right)=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2} . \tag{6}
\end{equation*}
$$

Bernoulli random experiment results in only two possible results (eg success and failure). If the n trials of the random experiment are independent and if the probability of a success p in each trial is constant then the number of trials resulting in a success X is a binomial random variable and its probability mass function f_{X} is a binomial distribution:

$$
\begin{equation*}
f_{X}(x)=P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1, \ldots, n \tag{7}
\end{equation*}
$$

The binomial coefficient is defined by:

$$
\begin{equation*}
\binom{n}{x}=\frac{n!}{x!(n-x)!} . \tag{8}
\end{equation*}
$$

In case the number of trials n is large and the probability of a success p is low, so that $n p \sim 1$, the probability mass function of the binomial distribution can be approximated by the probability mass function of the Poisson distribution where the parameter $\lambda=n p$ is used:

$$
\begin{equation*}
f_{X}(x)=P(X=x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1, \ldots \tag{9}
\end{equation*}
$$

The parameter λ equals the statistical mean of the binomial/Poisson random variable X. In the Poisson distribution, λ can be interpreted as a product of a mean frequency of successful results ν and the duration of the trial, that can be either time t, length l etc.:

$$
\begin{equation*}
\lambda=\nu \cdot t \quad \text { or } \quad \lambda=\nu \cdot l \quad \text { etc. } \tag{10}
\end{equation*}
$$

