Events

Definitions: $S=$ sample space/certain event; $\emptyset=$ impossible event; $A, B, C, \ldots \subset S=$ events.

	intersection $(A \cap B)$	union $(A \cup B)$
Commutativity:	$A \cap B=B \cap A$	$A \cup B=B \cup A$
Associativity:	$(A \cap B) \cap C=A \cap(B \cap C)$	$(A \cup B) \cup C=A \cup B \cup C)$
Subset:	$(A \cap B) \subset A,(A \cap B) \subset B$	$A \subset(A \cup B), B \subset(A \cup B)$
Misc.:	$A \subset B \Rightarrow A \cap B=A$	$A \cup \emptyset=A, A \cup A=A$
Distributivity:	$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Complement $\left(A^{C}\right)$:

$$
\begin{align*}
\left(A^{C}\right)^{C} & =A, & & A \subset B \Rightarrow B^{C} \subset A^{C} \\
A \cap A^{C} & =\emptyset, & & A \cup A^{C}=S \tag{1}
\end{align*}
$$

DeMorgan's laws:

$$
\begin{equation*}
(A \cup B)^{C}=A^{C} \cap B^{C}, \quad(A \cap B)^{C}=A^{C} \cup B^{C} \tag{2}
\end{equation*}
$$

Interesting: $(\cup, \cap, \subset, \supset, S, \varnothing) \stackrel{C}{\Longleftrightarrow}(\cap, \cup, \supset, \subset, \varnothing, S)$

Probability

Probability of a complementary event:

$$
\begin{equation*}
P\left(A^{C}\right)=1-P(A) \tag{3}
\end{equation*}
$$

Probability of the union of two events:

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{4}
\end{equation*}
$$

Probability of the intersection of mutually exclusive events:

$$
\begin{equation*}
A \cap B=\varnothing \quad \Rightarrow \quad P(A \cap B)=0 \tag{5}
\end{equation*}
$$

Conditional probability of event A given the event B :

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { where } \quad P(B)>0 \tag{6}
\end{equation*}
$$

- commutativity of intersection: $P(A \cap B)=P(A \mid B) P(B)=P(B \cap A)=P(B \mid A) P(A)$
- A and B are independent events $\Leftrightarrow P(A \mid B)=P(A) \Leftrightarrow P(B \mid A)=P(B) \Leftrightarrow P(A \cap B)=P(A) \cdot P(B)$

Mutually exclusive and exhaustive set $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$:

$$
\begin{equation*}
\bigcup_{i=1}^{n} A_{i}=S, \quad A_{i} \cap A_{j}=\emptyset \quad \text { for } i \neq j \tag{8}
\end{equation*}
$$

Bayes theorem ($\left\{A_{i}\right\}$ is mutually exclusive and exhausting set):

$$
\begin{equation*}
P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} \cap B\right)}{P(B)}=\frac{P\left(A_{j}\right) P\left(B \mid A_{j}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)} \tag{9}
\end{equation*}
$$

