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Generalized Plasticity and Uniaxial Constrained Recovery
in Shape Memory Alloys

F. Kosel and T. Videnic
Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia

In this article uniaxial constrained recovery is modelled using
the theory of generalized plasticity, which was developed by J.
Lubliner and F. Auricchio. As a mechanical obstacle that delays
free recovery in a shape memory alloy wire, a bias spring made
of an ordinary material is used. Two flow rules are used in the
modelling: linear and exponential.

Keywords shape memory alloys, martenistic transformation,
constrained recovery, generalized plasticity, linear flow
rule, exponential flow rule

1. INTRODUCTION
Smart materials are receiving more and more attention,

mainly for their possible innovative use in practical applica-
tions. An important example is the family of shape memory
alloys (SMA), which have an intrinsic capacity to return to a
previously defined shape by increasing the metal’s temperature.
They have an interesting property of remembering the original
shape or size.

Shape memory effect (SME), arises from the changes of
crystal structure of the solid phases of the material. These
phases are a low-temperature phase (martensite) and a high-
temperature phase (austenite). From a metallurgic point of view
[1], a martensitic transformation is a solid-solid, diffusionless
transition between a crystallographyically more-ordered par-
ent phase (austenite) and a crystallographyically less-ordered
product phase (martensite). In the case of SMA the martensitic
transformation is reversible and, usually, rate-independent. The
return to the original shape starts at a temperature called austen-
ite start transformation temperature, AS. This transformation
completes at the austenite finish transformation temperature, Af.
Large residual strains of even 10% can be recovered in this way
and the process is often refered as the free recovery. If the free
recovery is hampered by an external obstacle before tempera-
ture Af is reached, the process is called constrained recovery

Received 26 April 2006.
Address correspondence to F. Kosel, Faculty of Mechanical En-

gineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana,
Slovenia.

and large stresses, up to 800 MPa, can be generated in SMA
elements. This property makes SMA ideally suited for use as
fasteners, seals, connectors and clamps. Vice versa, if the SMA
is cooled from fully austenitic phase, it starts to transform back
to martensite at a temperature called martensite start transforma-
tion temperature, MS. This transformation ends at the martensite
finish transformation temperature, Mf. Besides the martensitic
transformations associated with the thermal regime, they can be
triggered by mechanical loading and the martensite obtained in
this way is then called the stress-induced martensite (SIM).

In addition to the SME, the other main property of SMA is
its superelastic effect (SE). At constant high temperature (above
temperature Af) a mechanical loading–unloading cycle induces
highly-nonlinear large deformations. At the end of the loading-
unloading cycle no permanent deformations are present. The
cycle usually presents a hysteresis loop.

SMA have been studied experimentally for the last four
decades and numerous constitutive models have been proposed
over the last 20 years [2–13]. To the authors judgement, the the-
ory of generalized plasticity [8, 11–13] is well suited for the
modelling of complex material behaviors, SME and SE, which
may occur in SMA. It is based on some fundamental axioms and
on results from elementary set theory and topology.

The principal aim of the present paper is to develop a math-
ematical model of the uniaxial constrained recovery in SMA
wire element, using the generalized plasticity theory. As a me-
chanical obstacle, which delays free recovery in a SMA wire, a
bias spring made of an ordinary material is used. The data for
Ni-Ti-6wt%Cu SMA wire and steel bias spring are fed into the
mathematical model in order to generate the system response.
One possible practical application of this theory is in the case
of tissue fixation in minimal access surgery [14]. The process of
constrained recovery is divided into three temperature regions
and two flow rules [8, 11] are used in the modelling: linear and
exponential. Equations for the linear flow rule are written in a
closed form, but for the exponential flow rule simple numerical
methods have to be used, since the solution in a closed form is
not possible. In the exponential flow rule, scalar constant β is
included and measures the rate at which the transformation pro-
ceeds. It is interesting to observe how by varying the constant β

very different evolution processes can be obtained [12], which
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4 F. KOSEL AND T. VIDENIC

is advantage comparing to the linear model. Practical determi-
nation of constant β is not clear, so its influence on the results
of constrained recovery is shown.

2. GENERALIZED PLASTICITY AND SHAPE
MEMORY ALLOYS
Generalized plasticity is an internal-variable model of rate-

independent inelasticity and was developed in order to model
the behavior of elastic-plastic solids in which, following initial
plastic loading and elastic unloading, the reloading is not nec-
essarily elastic up to the state at which unloading began. Such
solids include graphite, some stainless steels, some rocks and
also SMA.

This section will discuss the application of the generalized
plasticity model to a simplified representation of the behavior of
the SMA. The simplification lies in the fact, which will be here
ignored, that martensite, when first formed, may be present in
multiple orientations (multiple-variant martensite) and is char-
acterized by a twinned structure, which minimizes the misfit
between the martensite and the surrounding austenite. On the
other hand, if there is a prefered direction for the occurence of
the transformation, which is often associated with a presence of
stress, all the martensite crystals tend to be formed on the most
favorable habit plane. The product phase is then called single-
variant martensite and is characterized by a detwinned struc-
ture, which again minimizes the misfit between the martensite
and surrounding austenite. During the process of constrained re-
covery, large stresses are generated in SMA elements and such
simplification is justified.

Four functions bounding by the straight lines two bands in the
stress σ-temperature T plane are introduced in the generalized
plasticity model of SMA:

F1 = σ − C(T − Mf) (1)

F2 = σ − C(T − Ms) (2)

F3 = σ − C(T − As) (3)

F4 = σ − C(T − Af) (4)

where C is a stress rate and is almost the same in both phase
transformations (A → M and M → A). The loading surfaces
are given by the lines:

F = σ − CT = konst (5)

The geometry of the regions is shown in Figure 1.
In a two phase system, it can be assumed that the only internal

variable is the fraction of mass occupied by one ofthe phases.
Usually, this variable is the mass fraction of martensite ξ, with ξ

= 0 denoting all austenite and ξ =1 all martensite. The inelastic
strain εSR is proportional to ξ.

where εS0 is the maximum inelastic strain, attained when the
solid is all martensite, and disappears when heated above Af.
Since transformation from single-variant martensite to austenite
is important in the case of constrained recovery, only austenite
production using two flow rules, linear and exponential, will be

FIG. 1. Inelastic domains for austenite to martensite and martensite to austen-
ite phase transformation.

shown next.

εSR = εS0ξ (6)

2.1. Austenite Production
In the region where phase transformation from martensite

to austenite may take place a stress decrease at constant tem-
perature, a temperature increase at constant stress or a proper
combination of these actions should occur, Figure 2.

The conditions for phase transformation can be mathemati-
cally written in this way:

F3 < 0, F4 > 0 and Ḟ < 0 (7)

Therefore the product F3 F4 must be negative for transforma-
tion from martensite to austenite. Now two rate equations for ξ

will be examined: first the linear and then exponential flow rule
type.

2.1.1. Linear Flow Rule
The linear flow rule for ξ can be written in the following form

[11]:

ξ = −ξ
〈−F3 F4〉〈−Ḟ〉

|F3 F4|F4
(8)

FIG. 2. Production of austenite.
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GENERALIZED PLASTICITY AND UNIAXIAL CONSTRAINED RECOVERY IN SMA 5

where 〈·〉 is the Macaulay bracket, that is 〈x〉 = (x + |x |)/2.
Using (3–5), expresion (8) can be rewritten in this form:

dξ

dt
= ξ

dσ
dt − c dT

dt

σ − C(T − Af)
ζ = A(σ − C(T − Af)) (9)

where A is integration constant and can be defined from the
condition at the beginning of the transformation, Figure 2, ξ =
1 and F3 = 0:

A = 1

C(Af As)

ξ = σ − C(T − Af)

C(Af As)
(10)

σ = C[T − Af + ξ(Af As)] (11)

It can be seen from Eq. (10) or (11) that the relationship
between martensite mass fraction ξ and stress σ is linear, so the
flow rule (8) can be named linear.

2.1.2. Exponential Flow Rule
In the case of the exponential flow rule it can be written [8,11]:

ξ = −βξ
〈−F3 F4〉〈−Ḟ〉

|F3 F4|F2
4

(12)

where β is a positive constant, which measures the rate at which
the phase transformation proceeds, and is another material pa-
rameter that has to be measured. Similarly as in the case of linear
flow rule, it can be written:

ξ = B exp

[
β

σ − C(T − Af)

]
(13)

where B is integration constant and can be defined from the
condition at the beginning of the transformation, Figure 2, ξ =
1 and F3 = 0:

B = exp

[
β

C(Af − As)

]

ξ = exp

[
β

C(Af − As)
− β

σ − C(T − Af)

]
(13)

σ = C(T − Af) + βC(Af − As)

β − C(Af − As) ln ξ
(14)

It can be seen from Eq. (13) that the relationship between the
martensite mass fraction ξ and stress σ is exponential, so the
flow rule (12) can be named exponential.

3. PROCESS OF UNIAXIAL CONSTRAINED RECOVERY
In elements made of shape memory alloys, significant stresses

occur if during heating the recovery to austenite structure is

constrained by an external obstacle. The whole process is called
constrained recovery. In this study the shape memory element is
represented by a shape memory alloy wire (SMA wire) and the
external obstacle by a linear bias spring made of conventional
material. Since an SMA wire is a uniaxial element, the process
is also treated as uniaxial.

The SMA wire is first cooled from austenite state, T > Af,
to the martensite state, T = T0 < Mf. It is assumed that the total
strain of the SMA wire in this moment is zero, εS = 0, and
the length is denoted by L0. The SMA wire is then loaded by
tensile force and unloaded at constant temperature T = T0 < Mf

so that the total strain after unloading is εS0, and the length is
denoted by LS0. Strain εS0 = εSR disappears when the SMA
wire is heated again above temperature Af. The process is called
free recovery. If recovery of the SMA wire is hampered by an
external obstacle, the process is then named constrained recovery
and recoverable strain εSR disappears only when temperature
T = TSE = σ/C+Af is reached. The process of constrained
recovery is schematically shown in Figure 3, where a linear
bias spring made of an ordinary material presents an external
obstacle.

In Figure 3, Lk0 is spring length at temperature T0, T instanta-
neous temperature of the spring and SMA wire, Lk instantaneous
length of the spring at temperature T, LS instantaneous length
of the SMA wire at temperature T, TC contact temperature at
which the SMA wire and the spring touch each other and α

linear thermal expansion coefficient of the bias spring.

3.1. Modelling of Uniaxial Constrained Recovery
The expression for the total strain of SMA wire εS can be

written in the following way:

εS = LS − L0

L0
(15)




εS = εSR + εSA + εSE

= εSR + αS(T − T0) + σ

ES

(16)

FIG. 3. Process of uniaxial constrained recovery.
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6 F. KOSEL AND T. VIDENIC

where εSR is the recoverable strain of the SMA wire, εSA ther-
mal dilatation, εSE elastic strain, αS linear thermal expansion
coefficient of the SMA wire, σ stress in the SMA wire and ES

the elastic modulus of the SMA wire. The elastic moduli ES of
austenite and martensite are usually different, but in the current
approach a constant value for ES will be chosen for both phases.
The expression for the total strain of the bias spring εk is:

εk = Lk − Lk0

Lk0
(17)

The complete process of constrained recovery can be divided
into three temperature ranges: a) the SMA wire has a martensite
structure between the temperatures T0 and AS at which starts the
reverse martensitic transformation in the wire. b) With increas-
ing temperature the retransformation in the SMA wire continues
(the wire contracts while the spring extends) until at tempera-
ture TC the wire and the spring touch each other. c) Above tem-
perature TC, retransformation in the SMA wire is constrained
because of the action of the spring and continues until tempera-
ture TSE at which the retransformation in the wire is completed.
The stress in the SMA wire increases, therefore the temperature
TSE at which the retransformation in the wire ends is equal to
σ/C + Af.

Expressions (15) and (17) hold true in all three temperature
ranges.

3.1.1. First Temperature Range T0 ≤ T ≤ AS

The entire process of deformation of the SMA wire can be
described in this way:

εS = εS0 + αS(T − T0) (18)

With increasing temperature the spring starts extending and
its total strain εk is:

εk = α(T − T0) (19)

The stress states in both elements are zero, since the SMA
wire and bias spring do not touch each other in this temperature
ranges.

3.1.2. Second Temperature Range AS ≤ T ≤ TC

At temperature AS in the SMA wire a reverse transformation
into austenite is started. The deformation of the SME wire is:

εSεSR + αS(T − T0) (20)

Expression (20) is very similar to expression (18) only that
the recoverable shape memory strain εSR of the SMA wire is no
longer constant but diminishes with temperature T and can be
calculated using the linear or exponential flow rule. In the case
of the linear flow rule (10), assuming σ = 0 and using Eq. (6) it

can be written:

εSR = εS0 + Af − T

Af − AS
(21)

and in the case of the exponential flow rule:

εSR = εS0 exp

[
− β(T − AS)

C(Af − AS)(Af − T )

]
(22)

Recoverable contact strain of the SMA wire εC at temperature
TC can be calculated from the condition that the lengths of the
SMA wire and the bias spring are equal, LS(TC) = Lk(TC):

{
L0[1 + εC + αS(TC − T0)]

= Lk0[1 + α(TC − T0)]
(23)

In the case of linear flow rule (21), contact temperature TC

can now be written:

TC = Af
εC

εS0
(Af − AS) (24)

and in the case of exponential flow rule (22):

TC
C(Af − AS)Af ln(εC/εS0) − βAS

C(Af − AS) ln(εC/εS0) − β
(25)

3.1.3. Third Temperature Range TC ≤ T ≤ TSE

In this range the deduction of expressions becomes more
complicated since the stress in the SMA wire is no longer zero but
increases with increasing temperature T (εSR is getting smaller
and the spring resists contraction). There is a new mechanical
equilibrium state which holds for the SMA wire-bias spring
system, Figure 4.

The system shown in Figure 4 has to be in static equilibrium.
The force in the spring Fk can be written as:

Fk = k[Lk0(1 + α(T − T0)) − Lk]; Fk > 0 (26)

where k is the spring constant. By considering the equilibrium
equation, expressions (26) and (15), and equal lengths of the
SMA wire and the spring, the total strain of the SMA wire εS

can be expressed:

εS = C1 + C2T − C3σ (27)

FIG. 4. Forces in the SMA wire (FS) bias spring (Fk) system.
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GENERALIZED PLASTICITY AND UNIAXIAL CONSTRAINED RECOVERY IN SMA 7

where C1, C2 and C3 are the constants:




C1 = (Lk0 − L0 − αT0Lk0)/L0

C2 = αLk0/L0

C3 = Q/(kL0)

(28)

and Q is the SMA wire’s cross section. From Eq. (16) it can be
written [15, 16]:




dεS = dεSR + dεSA + dεSE

= dεSR + αSdT + dσR

ES

(29)

where dσR = CdT . The stress increase dσR is an elastic part
of the total stress increase in the SMA wire dσR. It has to be
emphasized that the stress increase dσR is greater than the total
stress increase in the SMA wire dσ, since phase transformation
from martensite to austenite reduces the total stress increase dσ,
Figure 5. An infinitesimal temperature increase dT induces a
stress increase dσ and a strain change dεS. This infinitesimal step
from point A1(T , σ, εS) to point A3(T + dT , σ + dσ, εS + dεS),
Figure 5, can be also achieved in two intermediate steps. The first
step (A1 → A2) is an infinitesimal temperature increase dT at
constant recoverable strain εSR. This temperature increase yields
an increase of the stress by dσR. The second step (A2 → A3) is
the unloading process at constant temperature T + dT , which
results in a decrease of the total strain by a recoverable strain
dεSR.

From (27) it can be written:

dεS = C2dT − C3dσ (30)

Equations (29) and (30) can be equalized and divided by dT:

dεSR

dT
= C2 − αS − C

ES
− C3

dσ

dT
(31)

FIG. 5. The process of a temperature increase dT (A1→A3) can be replaced by a temperature increase dT at a constant recoverable strain εSR (A1→A2), followed
by an unloading at constant temperature T (A2→A3).

∫ εSR

εC

dεSR =
(

C2 − αS − C

ES

) ∫ T

TC

dT − C3

∫ σ

0
dσ{

εSR = εC +
(

C2 − αS − C

ES

)
(T − TC) − C3σ (32)

There are two unknowns in expression Eq. (32), stress in
the SMA wire σ and recoverable strain in the SMA wire εSR,
therefore the linear or exponential flow rule also have to be used.

3.0.0.1. Linear flow rule. In the linear flow rule (10), rela-
tion (6) can be used:

dεSR

dT
= εS0

Af − AS

(
1

C

dσ

dT
− 1

)
(33)

∫ εSR

εC

dεSR = εS0

Af − AS

(
1

C

∫ σ

0
dσ −

∫ T

TC

dT

)

εS R = εC + εS0

C(Af − AS)
σ − T − TC

Af − AS
εS0 (34)

Equations (32) and (34) are equalized and the stress in the
SMA wire σ is finally written:




σ = C(Af − AS)

εS0 + CC3(Af − AS)

×
(

C2 − α3 − C

ES
+ εS0

Af − AS

)
(T − TC) (35)

The temperature TSE at which transformation from martensite
to austenite during constrained recovery is completed can be
derived from (32) and (34) with condition εSR(TSE) = 0:




TSE = Af + εC
εS0

×εS0 ES + [ES(C2 − αS) − C](Af − AS)

C(1 + ESC3) − ES(C2 − αS)

(36)
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8 F. KOSEL AND T. VIDENIC

In the treated case the temperature TSE is always greater than
temperature Af. The stress at the end of constrained recovery
can also be determined using Eqs. (35) and (36) and condition
σSE = σ(TSE):




σSE = εC

εS0
C

×εS0 ES + [ES(C2 − αS) − C](Af − AS)

C(1 + ESC3) − ES(C2 − αS)

(37)

It can clearly be seen from Eqs. (36) and (37) that
TSE = Af and σSE = 0, if the recoverable contact strain in
the SMA wire εC is zero. The process is then called free
recovery.

It is now possible to write the constant CCR = dσ/dT from
(35) which is always positive and smaller than stress rate C :

CCR = dσ

dT

= C(Af − AS)

εS0 + CC3(Af − AS)

(
C2 − αS − C

ES
+ εS0

Af − AS

)

= C
TSE − Af

TSE − TC
= const. (38)

It is also interesting to determine the constant ECR = dσ/dεS,
using (30) and (38), which is a kind of elasticity modulus during
the process of constrained recovery:

ECR = CCR

C2 − C3CCR
= const. (39)

Constant ECR depends on both elements taking part in the
process of constrained recovery: the SMA wire and the spring.
It can be either positive or negative depending on the properties
of the SMA wire and the spring, as can be seen from (39).

Figures 6 and 7 show, in a schematic way, the entire process
of constrained recovery in the SMA wire considering the linear
flow rule.

From point 1 to 2, at temperature T0, the SMA wire is sub-
jected to tensile stress and then the stress is removed so that in
point 3 the recoverable shape memory strain εSR is equal to εS0,
this at the same time being the total strain of the SMA wire.
From point 3 onwards, the SMA wire is heated and it extends
until point 4 (temperature AS). The process from point 3 to 4
corresponds to the first temperature range T0 ≤ T ≤ AS. In point
4 the retransformation starts in the SMA wire and goes on at a
zero stress until point 5 (temperature TC) when the wire and the
spring touch each other.

The process from point 4 to 5 corresponds to the second tem-
perature range AS ≤ T ≤ TC. From point 5 onwards the SMA
wire and the spring touch each other and as a result stresses
occur in both elements. With the increase in temperature, the
SMA wire continues to contract, and in point 6 at temperature

FIG. 6. Stress-strain state in the SMA wire after constrained recovery.

TSE the retransformation ends. In Figure 6 the modulus of elas-
ticity during the constrained recovery is negative: ECR < 0. The
process from point 5 to 6 corresponds to the third temperature
range TC ≤ T ≤ TSE.

3.0.0.2. Exponential flow rule. In the exponential flow rule
(14), relation (6) can be used:

{
dσ

dT
= C

[C(Af − AS)]2β

εSR[β − C(Af − AS) ln(εS R/εSO )]2

dεS R

dT
(40)

Equation (40) can be equalized with expression dσ/dT from
Eq. (31) and then integrated:




1

C3

∫ εSR

εC

dεSR + [C(Af − AS)]2β

+
∫ εSR

εC

dεSR

εSR[β − C(Af − AS) ln(εSR/εS0)]2

= −
[

C(ESC3 + 1)

ESC3
+ αS − C2

C3

] ∫ T

TC

dT

FIG. 7. Stress-temperature state in the SMA wire after constrained recovery.
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GENERALIZED PLASTICITY AND UNIAXIAL CONSTRAINED RECOVERY IN SMA 9




εS R − εC + βC3C(Af − AS)

β − C(Af − AS) ln(εS R/εS0)

− βC3C(Af − AS)

β − C(Af − AS) ln(εC/εS0)

+
[

C2 − αS − C(ESC3 + 1)

ES

]
(T − TC)

(41)

The above recoverable strain εSR-temperature T relation is
not explicit; for a given temperature, iteration is needed for con-
vergence. When recoverable strain εSR from (41) is known, the
stress in the SMA wire σ at temperature T can be calculated
from (32):

{
σ = 1

C3

[
εC +

(
C2 − αS − C

ES

)
(T − TC) − εSR

]
(42)

Even though the recoverable strain εSR and the stress in the
SMA wire at a temperature T cannot be written in a closed form,
the temperatute TSE and the stress σSE can be written in a closed
form. If εSR (TSE) = 0 is set into Eq. (41), the temperature TSE

FIG. 8. The relationship between temperature T and recoverable strain in the SMA wire εSR at four different values of the constant β =1, 10, 50, 100 MPa and
contact strain εC =1.9 %.

at which constrained recovery is completed can be determined:




TSE = TC + ES

C(ESC3 + 1) − ES(C2 − αS)

×
[

βC3C(Af − AS)

β − C(Af − AS)In(εC/εS0)
+ εC

] (43)

Using (43) in (42) and according to condition σSE = σ(TSE),
the stress at the end of the constrained recovery σSE can also be
determined:




σSE = C − ES(C2 − αS)

ES(C2 − αS) − C(ESC3 + 1)

×
(

βC(Af − AS)

β − C(Af − AS) ln(εC/εS0)
+ εc

C3

)
εC

C3

(44)

It is clearly seen that the process of stress generation and strain
recovery is quite complex, even in the case of uniaxial elements.
In the case of the exponential flow rule the solution cannot be
written in a closed form. Moreover, this complex behaviour is
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10 F. KOSEL AND T. VIDENIC

influenced by a large number of parameters and practical deter-
mination of one of these parameters, constant β, is not clearly
known.

4. NUMERICAL EXAMPLES
The numerical values for material parameters are based on

those reported in literature [16, 17] for a Ni-Ti-6wt%Cu alloy
SMA wire with a diameter of 1.15 mm and a steel bias spring
(though not exactly equal to):

AS = 49◦C Af = 57◦C T0 = 30◦C

ES = 27000 MPa εS0 = 2.155% εC = 1.9%

Q = 1.0387 mm2 LS0 = 100 mm C = 9.83MPa/K

αS = 6.6 × 106k−1 α = 1 × 10−1k−1 k = 100 N/mm

Figure 8 shows the relationship between temperature T and
recoverable strain in the SMA wire εSR at four different val-
ues of constant β. As mentioned before, the way of a de-
termination of the constant β is not known yet. The results
of the free and constrained recovery using both flow rules,
linear and exponential, are shown and are quite similar for
β= 50 MPa, while for β= 1 and 10 MPa are not. Despite

FIG. 9. The relationship between the temperature T and the stress in the SMA wire σ at four different values of the constant β = 1, 10, 50, 100 MPa and contact
strain εC = 1.9%.

this resemblance it can not be concluded for sure, that for this
particular SMA alloy the constant β may be approximately
50 MPa.

Figure 9 shows the relationship between the temperature
T and the stress in the SMA wire σ at the same values of the
constant β as in Figure 8 during the process of constrained re-
covery. Again, the results for the linear and exponential flow
rules are quite similar for β = 50 MPa.

It is interesting to note the decrease in stress at the end of
constrained recovery for β= 50 and 100 MPa. This happens
because the phase transformation from martensite to austenite
slows down for these two values of β at the end of the process
of constrained recovery, Figure 8, but SMA wire is expanding at
the same time due to the linear thermal expansion process, which
is equal in all three temperature domains. The combination of
both processes causes some stress relaxation at the end of the
process in the SMA wire. This effect is not seen if the linear flow
rule or exponential flow rules with β = 1 and 10 MPa are used.
The contact temperature TC in Figures 8 and 9 for the linear flow
rule is 49.95◦C, while for exponential flow rule this temperature
varies with positive constant β. It is also clearly seen that the
temperature TSE at which the process of constrained recovery
ends is much higher than the temperature Af at which phase
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GENERALIZED PLASTICITY AND UNIAXIAL CONSTRAINED RECOVERY IN SMA 11

FIG. 10. Recoverable strain in the SMA wire εSR versus temperature T and stress in the SMA wire σ versus temperature T using β = 50 MPa at five different
contact strains: εC = 0.3%, 0.75%, 1.6%, 1.9% and 2.155%.

FIG. 11. Spring constant k versus stress σSE and spring constant k versus temperature TSE using exponential flow rule β = 50 MPa and contact strain εC = 1.9%.

FIG. 12. Spring constant k versus constrained recovery modulus ECR and spring constant k versus constrained recovery stress rate CCR using linear flow rule
and contact strain εC = 1.9%.
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12 F. KOSEL AND T. VIDENIC

transformation from martensite to austenite ends at zero stress.
The slope CCR = dσ/dT is similar in all four cases for different
constants β and is a function of temperature T , while for linear
flow rule it is a constant, as can be seen in Figure 9.

Figure 10 presents the relationship between recoverable strain
in the SMA wire εSR and temperature T and between stress in the
SMA wire σ and temperature T at five different contact strains
in the SMA wire: εC = 0.3%, 0.75%, 1.6%, 1.9%, 2.155%. The
exponential flow rule with β = 50 MPa is used in the calcu-
lation. It is clearly seen that stresses are highest, if the contact
strain εC = εS0 = 2.155% and the SMA wire and the bias
spring touch each other at temperature TC = AS = 49◦C,
when phase transformation in the SMA wire begins. Again, the
decrease of the stress at the end of constrained recovery can
be noted and the reason for the phenomenon is the same as
before.

Figure 11 shows the relationship between the spring constant
k and the stress σSE at the end of the process of constrained
recovery in the SMA wire and between the spring constant k
and the temperature TSE at which constrained recovery ends.
The exponential flow rule with β = 50 MPa is used in the
calculation. It can be clearly seen that the stress σSE and the
temperature TSE are limiting to a specific value as spring constant
k is increasing. If spring constant k = ∞, then σSE = 628.77
MPa, TSE = 120.96◦C.It is interesting to note what extreme
stresses can be generated by the SMA wire, even though its
elastic modulus ES is relatively low. This is one of the many
unique properties of the SMAs.

Figure 12 shows the relationship between spring constant
kversus constrained recovery modulus ECR = dσ/dεS defined
in (39) and spring constant k versus constrained recovery stress
rate CCR = dσ/dT defined in (38). The linear flow rule is used
in both graphs.

As already mentioned, constant ECR can be positive or neg-
ative, and for k = 884.38 N/mm it is ECR = ∞ (LS = const.
during the process of constrained recovery). Constant CCR is also
limiting to an exact value: CCR = 8.85 MPa/K at k = ∞ and is
always smaller than stress rate C = 9.83 MPa/K.

5. CONCLUSIONS
In this paper the process of constrained recovery in a SMA

wire is dealt with using the theory of generalized plasticity. Even
though simple flow rules were chosen, the problem can be solved
in a closed form only in the case of linear flow rule, while in the
case of exponential flow rule the solution in closed form is not
possible. This fact clearly shows that mathematical modelling
of smart structures is usually more complicated than in the case
of ordinary materials. A comprehensive study concerning deter-

mination of the constant β should be carried out in the future.
The results obtained with the linear flow rule are the same as the
results obtained in a different way [17] by the present authors.
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