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Abstract: The paper presents an analytical solution of a shrink-fit problem between an eccentric and a
centric circular annulus in the elastic domain. It is assumed that the material constants for both
elements are the same and that a plane stress or plane strain state occurs in both annuli. The
problem is solved using complex variable functions, where conformal mapping of the centric
circular annulus to the eccentric one can be used. Elements of the stress tensor and displacement
vector in both annuli are written in closed and finite form.
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NOTATION

a real constant
A real constant in mapping function !
ak coefficients of the Laurent series of

function ’�ð�Þ
bk coefficients of the Laurent series of

function  �ð�Þ
C, C1, C2 complex constants
e Neper’s number
e0 eccentricity of the shrink-fit assembly
e1, e1x, e1y position of the shrink-fit assembly (see

Figs 1 to 3)
E Young’s modulus
f1, f2 boundary conditions on contours �1 and

�2
h width of the shrink-fit assembly
i imaginary unit
k1, k2, k3, k4 dimensionless ratios
L, L0, L1, L2 contours of the shrink-fit assembly
Mt torque that can be borne by the shrink-fit

assembly
r0 outer radius of the inner centric member

of the shrink-fit assembly
r1 inner radius of the inner centric member

of the shrink-fit assembly
r2 outer radius of the outer non-centric

member of the shrink-fit assembly
s arc on contour L

S, S1, S2 domains of the shrink-fit assembly
t, t0, t1, t2 coordinates on contours L, L0, L1, L2

unx, uny components of the displacement vector
on contour L

ux, uy components of the displacement vector
x, y Cartesian coordinates
x0, y0 Cartesian coordinates on contour L0

Xn, Yn components of the surface force on
contour L

z complex variable
z0 dimensionless complex variable

� angle (see Fig. 2)
�1, �2 inner and outer contour on the mapped

domain �
� displacement jump on contour L0

� complex variable on the mapped domain
�

�, � Cartesian coordinates on the mapped
domain �

�1, �2 coordinates on contours �1 and �2
	 shear modulus
	S static friction coefficient

 Poisson’s ratio
� Ludolf ’s number
�1, �2 inner and outer radius of the circular

domain �

E Huber’s effective stress

n normal stress on contact contour L0


x, 
y, txy components of the stress tensor

Y yield stress
� mapped domain
tn shear stress on contact contour L0

’, ’1, ’2, ’� complex analytical functions
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� Kolosov’s constant in plane stress
 ,  1,  2,  � complex analytical functions
! conformal mapping function

1 INTRODUCTION

A shrink-fit assembly between two structural compo-
nents, in the continuation called the inner and outer
member, can be made when the inner member is stamped
into the outer one. To begin with, the outer diameter of
the inner member is slightly bigger than the inner dia-
meter of the outer member for a displacement jump �.
A shrink fit can be achieved if the outer member is
expanded by heating, slipped over the inner member
and then allowed to cool. Such assemblies are frequently
used in engineering as a simple way of torque or some
other load transmission. By suitable choice of the dis-
placement jump �, the bearing capacity of a construction
can be increased.

Shrink-fit problems between non-centric or non-
circular members are very interesting for engineering,
but are mathematically complicated to solve. It is pos-
sible to solve such problems in the elastic domain using
the complex variable function method, where conformal
mapping of an arbitrarily shaped domain to a circular
domain can be used. Doing so, the boundary conditions
on a circle can be satisfied much more easily. There have
been quite a few papers [1–5] dealing with the mechanical
behaviours of shrink-fitted joints in the elastic domain by
the complex variable function method. Mainly they
relate to joints between circular members or circular
members imbedded in half-space.

The systematic use of complex variable theory in plane
elasticity was first proposed by Kolosov [6], who found
that the stress and displacement state in a plane elastic
problem can be expressed by two complex functions
’ðzÞ and  ðzÞ. A very significant contribution to the
complex variable methods was proposed by Muskhelish-
vili [7], while problems with mixed boundary conditions
were dealt with in detail by Sherman [8, 9].

2 THEORY OF A SHRINK FIT BETWEEN

NON-CIRCULAR MEMBERS

Some general theory of a shrink fit between two arbitrarily
shaped members with identical elastic constants, which
was proposed by Sherman [9], will briefly be presented.
A finite twofold connected domain S consists of two
elastic domains S1 and S2. Let the inner boundary of
domain S be denoted by L1 and the outer one by L2.
The inner domain S1 is shrink-fitted into the outer
domain S2. While the boundaries L1 and L2 are of an
arbitrary shape, let the contact boundary L0 be circular
(Fig. 1). In accordance with Muskhelishvili’s and Sher-
man’s theory, the problem of determining the stress and

displacement state in both members can be solved in
terms of four complex functions ’1ðzÞ,  1ðzÞ, ’2ðzÞ and
 2ðzÞ, which must be analytical in domains S1 and S2

and must satisfy the boundary conditions.
In the case of the first boundary problem, when the

surface forces on the contour are known, and if the
body forces are neglected, it can be written in the general
form

’ðtÞ þ t’0ðtÞ þ  ðtÞ ¼ i

ðs
0
ðXn þ iYnÞ dsþ C on L

ð1Þ

where Xn and Yn are components of the surface force on
contour L in the x and y directions respectively, and C is
an unknown complex constant. In the case of the second
boundary problem, when the displacement state on the
contour is prescribed, and if the body forces are
neglected, it can be written in the general form

�’ðtÞ � t’0ðtÞ �  ðtÞ ¼ 2	ðunx þ iunyÞ on L ð2Þ

where, in the case of plane stress, � ¼ ð3� 
Þ=ð1þ 
Þ,
and, in the case of plane strain, � ¼ 3–4
, 
 is Poisson’s
ratio, 	 ¼ E=½2ð1þ 
Þ�, E is Young’s modulus and unx
and uny are displacements in the x and y directions
respectively on L.

In the case where the shrink-fit contours L1 and L2 are
unloaded, the only load is the displacement jump, �, on
the contact contour L0. From equation (1) it can be writ-
ten for the outer and inner contour as

’jðtjÞ þ tj’
0
jðtjÞ þ  jðtjÞ ¼ Cj on Lj ð j ¼ 1, 2Þ ð3Þ

where tj are points on contour Lj (Fig. 1) and Cj are
unknown complex constants. On the contact contour
L0, the same stress state must occur:

’1ðt0Þ þ t0’
0
1ðt0Þ þ  1ðt0Þ ¼ ’2ðt0Þ þ t0’

0
2ðt0Þ þ  2ðt0Þ

ð4Þ

Fig. 1 Geometry of two shrink-fitted non-circular members
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where t0 are points on contour L0 (Fig. 1). Besides this,
on the contact contour L0 the difference in displacements
of both members must be equal to the displacement jump
�. According to equation (2), it can be written as

�’2ðt0Þ � t0’
0
2ðt0Þ �  2ðt0Þ

� �’1ðt0Þ þ t0’
0
1ðt0Þ þ  1ðt0Þ ¼ 2	� ei� ð5Þ

The right-hand side of boundary condition (5) can be
written in a different way according to Fig. 2:

ei� ¼ cos�þ i sin� ¼ x0 þ iy0 � ðe1x þ ie1yÞ
r0

¼ t0 � e1
r0

ð6Þ

Boundary conditions (3) to (5) must be satisfied by func-
tions ’1ðzÞ,  1ðzÞ, ’2ðzÞ and �2ðzÞ. Sherman reduced
these four boundary conditions to two and wrote them
in the form of the first boundary problem on contours
L1 and L2.

Considering equations (4) to (6), and after some
arrangement, it is possible to write

’2ðt0Þ ¼ ’1ðt0Þ þ
2	�ðt0 � e1Þ
ð1þ �Þr0

ð7Þ

If equation (7) is derivated with respect to t0, conjugated,
multiplied by t0 and inserted into equations (4) and (5), it
can be written as

 2ðt0Þ ¼  1ðt0Þ �
2	�ð2t0 � e1Þ
ð1þ �Þr0

ð8Þ

Expression (8) is conjugated and, considering Fig. 2, can
be written as

 2ðt0Þ ¼  1ðt0Þ �
2	�

ð1þ �Þr0

�
2r20

t0 � e1
þ e1

�
ð9Þ

In the next step, Sherman introduced two functions that
are analytical in domain S2. These functions are crucial

for a solution of a shrink-fit problem in the elastic
domain:

’�ðzÞ ¼ ’2ðzÞ ð10Þ

 �ðzÞ ¼  2ðzÞ þ
4	�r0

ð1þ �Þðz� e1Þ
ð11Þ

Expressions (10) and (11) are inserted into equations (7)
and (9), so it is possible to write

’�ðt0Þ ¼ ’1ðt0Þ þ
2	�ðt0 � e1Þ
ð1þ �Þr0

ð12Þ

 �ðt0Þ ¼  1ðt0Þ �
2	�e1

ð1þ �Þr0
ð13Þ

Functions ’�ðzÞ and  �ðzÞ are analytical in domain S2.
From equations (12) and (13) it can be seen that they
are analytical in domain S1 too (analytical continuation
of the complex function). This means that functions
’�ðzÞ and  �ðzÞ are analytical in the complete domain
S, and it is possible to write

’�ðzÞ ¼ ’1ðzÞ þ
2	�ðz� e1Þ
ð1þ �Þr0

ð14Þ

 �ðzÞ ¼  1ðzÞ �
2	� e1

ð1þ �Þr0
ð15Þ

Using functions ’�ðzÞ and  �ðzÞ, boundary conditions
(3) can now be expressed as

’�ðt1Þ þ t1’
0�ðt1Þ þ  �ðt1Þ ¼

4	�ðt1 � e1Þ
ð1þ �Þr0

þ C1

on L1 ð16Þ

’�ðt2Þ þ t2’
0�ðt2Þ þ  �ðt2Þ ¼

4	�r0
ð1þ �Þðt2 � e1Þ

þ C2

on L2 ð17Þ

The problem of a shrink fit is written in the form of a first
boundary problem, and boundary conditions (16) and
(17) represent the basic equations that must be satisfied
by functions ’�ðzÞ and  �ðzÞ. Functions ’�ðzÞ and
 �ðzÞ are sought in the form of Laurent’s sums and,
when they are known, functions ’1ðzÞ,  1ðzÞ, ’2ðzÞ and
 2ðzÞ can be obtained from equations (10), (11), (14)
and (15) respectively. The stress and displacement state
in both members can finally be obtained from the well-
known Kolosov’s expressions


x þ 
y ¼ 4Re½’0
jðzÞ�, j ¼ 1, 2


y � 
x þ 2itxy ¼ 2½z’00
j ðzÞ þ  0

jðzÞ�, j ¼ 1, 2

2	ðux � iuyÞ ¼ �’jðzÞ � z’0
jðzÞ �  jðzÞ, j ¼ 1, 2

ð18Þ

Fig. 2 Relationship between an angle � and the other geo-
metry of a shrink-fit
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3 CONFORMAL MAPPING AND BOUNDARY

CONDITIONS

The conformal mapping method is used in cases when
domain S has an arbitrary shape and when it is very
useful to be mapped to a circular domain �, where it is
much easier to satisfy the boundary conditions. In the
present case, the centric circular annulus domain �,
which is defined by �1 4 j�j4 �2 in complex plane
� ¼ � þ i�, is conformally mapped into the domain of
the eccentric circular annulus S in the complex plane
z ¼ xþ iy (Fig. 3).

The bilinear conformal mapping function z ¼ !ð�Þ in
this case is

!ð�Þ ¼ �

1� a�
, a ¼ e0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr21 � r22Þ2 � 2e20ðr21 þ r22Þ þ e40

q

ð19Þ
The inner radius �1 and outer radius �2 can be obtained
from

�1 ¼
2r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4a2r21

q
þ 1

, �2 ¼
2r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4a2r22

q
þ 1

ð20Þ
The expression for e1 (Fig. 3) is

e1 ¼ e1 ¼
a�21

1� a2�21
ð21Þ

Boundary conditions (16) and (17) can be written on the
mapped domain � after conjugation:

’�ð�1Þ þ
!ð�1Þ
!0ð�1Þ

’0
�ð�1Þ þ  �ð�1Þ

¼ 4	�ð!ð�1Þ � e1Þ
ð1þ �Þr0

þ C1 on �1 ð22Þ

’�ð�2Þ þ
!ð�2Þ
!0ð�2Þ

’0
�ð�2Þ þ  �ð�2Þ

¼ 4	�r0
ð1þ �Þ½!ð�2 � e1Þ�

þ C2 on �2 ð23Þ

where �1 and �2 are points on contours �1 and �2. It is
essential for further investigation to evaluate the right-
hand side of equations (22) and (23). Let functions
f1ð�Þ and f2ð�Þ be introduced, which can be written
from equations (22) and (23) after using equations (19)
and (21):

f1ð�Þ ¼
4	�ð!ð�Þ � e1Þ

ð1þ �Þr0

¼ 4	�ð1� a�Þ
ð1þ �Þr0ð1� a2�21Þð� � a�21Þ

ð24Þ

f2ð�Þ ¼
4	�r0

ð1þ �Þ½!ð�Þ � e1�

¼ 4	�r0ð1� a2�21Þð1� a�Þ
ð1þ �Þð� � a�21Þ

ð25Þ

It is possible to prove that functions f1ð�Þ and f2ð�Þ are
always analytical in the domain � since the singular
point � ¼ a�21 always lies outside domain � (Fig. 3).
This fact simplifies the mathematical treatment of this
particular case. In the case of a shrink fit between two
eccentric circular rings, functions f1ð�Þ and f2ð�Þ can,
under certain circumstances, have singular points inside
domain �. In the present paper, such difficulties will
not be treated, though they can be solved [10].

For the finite, twofold connected domain �, functions
’�ð�Þ and  �ð�Þ can be written in the form of Laurent’s
sums:

’�ð�Þ ¼
X1

k¼�1
ak�

k,  �ð�Þ ¼
X1

k¼�1
bk�

k ð26Þ

where ak and bk are unknown complex constants and can
be determined from boundary conditions.

4 SOLUTION OF THE PROBLEM

In general, it is not possible to determine functions (26)
in a closed and finite form. Sometimes [11, 12], all con-
stants from functions (26) can be determined, but, since
they are infinite in number, the stress and displacement

Fig. 3 Conformal mapping of the centric circular annulus to the eccentric one
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states cannot be expressed in a finite form. In the present
case the function ’�ð�Þ is sought in a form that enables a
closed and finite form, as proposed in reference [13]:

’�ð�Þ ¼
X1

k¼�1
ak�

k þ A�

1� a�
ð27Þ

where A is an unknown real constant. When the x axis is
the symmetrical axis (Fig. 3), all unknown constants are
real:

C1 ¼ C1, C2 ¼ C2, ak ¼ ak, bk ¼ bk,

A ¼ A

Let the boundary condition (22) be multiplied by

1

2pi
d�1
�1 � �

and let be it integrated on contour �1 around the
domains j�j < �1 and j�j > �1 (Fig. 4), j ¼ 1.

This method for solving the boundary conditions,
when Cauchy-type integrals have to be solved, was intro-
duced by Muskhelishvili [7]. The result of integration
around both domains in Fig. 4, j ¼ 1, can be written as

 �ð�Þ ¼ �’�

�
�21
�

�
� !ð�21=�Þ

!0ð�Þ ’0
�ð�Þ

þ 4	��21ð1� a�Þ
ð1þ �Þr0ð1� a2�21Þð� � a�21Þ

þ C1 ð28Þ

In a similar way, boundary condition (23) can be multi-
plied by

1

2pi
d�2
�2 � �

and integrated on contour �2 around the domains
j�j < �2 and j�j > �2 (Fig. 4), j ¼ 2. The result is

 �ð�Þ ¼ � ’�

�
�22
�

�
� !ð�22=�Þ

!0ð�Þ ’0
�ð�Þ

þ 4	�r0ð1� a2�21Þð1� a�Þ
ð1þ �Þð� � a�21Þ

þ C2 ð29Þ

Functions (28) and (29) can be equalized, so that only
function ’�ð�Þ and constants C1 and C2 are unknown,

and multiplied by ð� � a�21Þð� � a�22Þ. After some
arrangement, it follows that

2�22A� þ
X1

k¼�1
½ð�2ð2�kÞ

2 � �
2ð2�kÞ
1 Þa2�k

� að�21 þ �22Þð�2ð1�kÞ
2 � �

2ð1�kÞ
1 Þa1�k

þ a2�21�
2
2ð��2k

2 � ��2k
1 Þa�k��k þ ð�22 � �21Þ

�
X1

k¼�1
½kak � 2aðk� 1Þak�1 þ a2ðk� 2Þak�2��k

� 2�21A� þ ðC1 � C2Þ½�2 � að�21 þ �22Þ� þ a2�21�
2
2�

¼ 4	�½�21 � r20ð1� a2�21Þ2�
ð1þ �Þr0ð1� a2�21Þ

½a�2 � ð1þ a2�22Þ� þ a�22�

ð30Þ
Comparing the coefficients of �k on both sides of equa-
tion (30), an infinite system of linear equations with an
infinite number of unknowns (ak; k ¼ �1, A, C1 and
C2) can be obtained. A suitable choice of function (27)
enables equation (30) to be fulfilled for each k. Most
of the constants ak are zero, only a�1, a0 and a1 are
not, while one of the constants C1 or C2 cannot be
determined, as is also known from the literature [10].
In the system of equations that emerges from equation
(30), the constant a0 does not appear and cannot be
determined. A special name for constants a0, C1 and
C2 is additional constants, since they do not affect the
stress state and the missing equation for determination
of the displacement state is a condition of a single-
valued solution [7]. For the present problem this
condition connects a0 and C1 and will be presented
later. The unknown constants from equation (30) are

a1 ¼
4	��22½�21 � r20ð1� a2�21Þ2�

ð1þ �Þr0ð�22 � �21Þ
� ½4a2�21�22 � ð�21 þ �22Þð1þ a4�21�

2
2Þ��1

a�1 ¼ a2�21�
2
2a1

C1 � C2 ¼
að�22 � �21Þ2ð1� a2�22Þ

�22ð1� a2�21Þ
a1

A ¼ ð�21 � �22Þ½a2�22ða2�22 � 2Þ þ 1�
2�22

a1

ð31Þ
Functions ’�ð�Þ and  �ð�Þ can now be written as

’�ð�Þ ¼
a�1

�
þ a0 þ a1� þ

A�

1� a�
ð32Þ

 �ð�Þ ¼ � a�1�

�21
� a0 �

a1�
2
1

�
� �21ð1� a�Þ2

� � a�21

�
a1 �

a�1

�2

�

� 2A�21
� � a�21

þ 4	�ð1� a�Þe1
ð1þ �Þr0að� � a�21Þ

þ C1 ð33Þ

Fig. 4 Domains of integration of boundary conditions on
contour �j , j ¼ 1, 2
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In order to determine function  �ð�Þ, it is not necessary
to know constants bk from the second of functions
(26), since equations (28) or (29) can be used instead. It
turns out to be better to use equation (28) since
!ð�22=�Þ in equation (29) can have, at great values of
eccentricities e0, a singular point � ¼ a�22 inside domain
� (Fig. 3). The other three possible singular points
� ¼ 0, � ¼ 1=a and � ¼ a�21 are never inside domain �.
In this way, expressions (32) and (33) are analytical in
domain �, as claimed by Sherman’s theory.

A condition of the single-valued solution of the plane
elasticity problem has the following general form:

�a0 � b0 ¼ 0

In the present case it can be obtained from expressions
(32) and (33) in the following form:

ð�þ 1Þa0 � C1 ¼ a�21ð2� a2�21Þa1 �
4	�a�21e1
ð1þ �Þr0

ð34Þ

In the present case, expression (34) appears in the
equation for determination of the displacement state
[equation (18)]. In this way, not only the stress state
but also the displacement state is determined, even
though one of the constants a0, C1 or C2 cannot be
determined.

Using function (19), ’�ðzÞ and  �ðzÞ can be deter-
mined from expressions (32) and (33), and then ’1ðzÞ,
 1ðzÞ, ’2ðzÞ and  2ðzÞ can be determined from expres-
sions (14), (15), (10) and (11) respectively. The stress
and displacement states in a circular centric annulus
can finally be determined using ’1ðzÞ and  1ðzÞ in
expressions (18):


x þ 
y ¼ 4Re

�
� a�1

z2
þ a1

ð1þ azÞ2 þ A� 2	�

ð1þ �Þr0

�


y � 
x þ 2itxy ¼ 2

�
2a�1z

z3
� 2aa1z

ð1þ azÞ3 �
a�1

�21ð1þ azÞ2 þ
a1�

2
1

z2
þ �21ð1� a2�21Þ
½ð1� a2�21Þz� a�21�2

�
a1

1þ az
þ ð1þ azÞ

�
2A� a�1

z2

�

� 4	�

ð1þ �Þr0ð1� a2�21Þ
�
þ �21
ð1� a2�21Þz� a�21

�
aa1

ð1þ azÞ2 � a

�
2A� a�1

z2

�
� 2ð1þ azÞa�1

z3

��

2	ðux � iuyÞ ¼ �

��
aþ 1

z

�
a�1 þ

a1z

1þ az

�
þ ð�� 1Þ

�
Az� 2	�

ð1þ �Þr0

�
z� a�21

1� a2�21

��

þ a�1z

z2
� a1z

ð1þ azÞ2 þ
a�1z

�21ð1þ azÞ þ �21

�
aþ 1

z

�
a1 þ

�21
ð1� a2�21Þz� a�21

�
�

a1
1þ az

þ ð1þ azÞ
�
2A� a�1

z2

�
� 4	�

ð1þ �Þr0ð1� a2�21Þ
�
þ ð�þ 1Þa0 � C1 ð35Þ

The stress and displacement state in a circular eccentric annulus are determined from expressions (18) using ’2ðzÞ and
�2ðzÞ:


x þ 
y ¼ 4Re

�
� a�1

z2
þ a1

ð1þ azÞ2 þ A

�


y � 
x þ 2itxy ¼ 2

�
2a�1z

z3
� 2aa1z

ð1þ azÞ3 �
a�1

�21ð1þ azÞ2 þ
a1�

2
1

z2
þ �21ð1� a2�21Þ
½ð1� a2�21Þz� a�21�2

�
�

a1
1þ az

þ ð1þ azÞ
�
2A� a�1

z2

�
� 4	�

1þ �

�
1

r0ð1� a2�21Þ
� r0

�
1

�21
� a2
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Solving expressions (35) and (36) is mathematically
simple but cumbersome and, for this task, computer
programs where complex numbers can be used are
available (e.g. Fortran). If eccentricity e0 is zero, then
expressions (35) and (36) are simplified and represent
the solution of a shrink fit between two centric circular
rings, which is well known.

5 NUMERICAL EXAMPLES

It is advisable to introduce dimensionless ratios into
equations (31) to (36):

k1 ¼
r1
r0
, k2 ¼

r2
r0
, k3 ¼

e0
r0
, k4 ¼

�

r0
, z0 ¼

z

r0

In all numerical examples, a plane stress state is assumed,
� ¼ ð3� 
Þ=ð1þ 
Þ. Firstly, elements of the stress ten-
sors in shrink-fitted steel members are determined. The
Young’s modulus and Poisson’s ratio for both members
are the same: E ¼ 210GPa and 
 ¼ 0:3. The geometry is:
k1 ¼ 2=3, k2 ¼ 2, k3 ¼ 2=3 and k4 ¼ 0:001. Stresses at
some points in both members are shown in Fig. 5.

For practical use it is more interesting to calculate
the effective stress, 
E, which allows comparison with a
uniaxial stress state. It can be calculated according to
Huber that


E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x þ 
2y � 
x
y þ 3t2xy

q
ð37Þ

Figure 6 shows the relationship between k1 ¼ r1=r0 and
the maximum effective stress 
E in both members. At
k1 ¼ 0:569, the maximum effective stresses 
E in both

members are equal. In the centric annulus the critical
point is A, and in the eccentric annulus it is B. Figure 7
presents the relationship between k4 ¼ �=r0 and the max-
imum effective stress 
E in both members. As before, the
critical points are A in the centric annulus and B in the
eccentric annulus. It can also be seen that the stress–
strain state in both members is in the elastic domain,
since the relationship between the effective stress 
E
and k4 ¼ �=r0 is linear.

Figure 8 shows the relationship between k3 ¼ e0=r0
and k4 ¼ �=r0 under the condition that the maximum
effective stress 
E in the shrink-fit assembly is equal to
the yield stress 
Y, which, for mild structural steel (0.17
per cent carbon), is equal to 
Y ¼ 
E ¼ 245MPa. At
most values of eccentricity, A is the critical point for
the centric annulus. Only at extreme values of eccentri-
city, k3 5 2:753, does B become the critical point of the
eccentric annulus. However, such values of eccentricity
are interesting only theoretically. The allowable displace-
ment jump is almost constant in the range of eccentrici-
ties that are practically important and even increases in
the range 0:64 k3 4 2:753.

Another point of interest is to examine the progress of
change in the value of torque Mt, which can be borne by
the shrink-fit assembly and still prevent slip between the
rings, and eccentricity e0. A shrink-fit assembly bears
torque Mt with friction and can be calculated from the
equation

Mt ¼ 2r20h	S

ðp
0

n d� ð38Þ

where h is the width of the inner and outer member, or of
the shrink-fit assembly, 	S is the coefficient of static

Fig. 5 Stresses in both members: (a) normal stress 
x (MPa); (b) normal stress 
y (MPa); (c) shear stress txy (MPa)
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friction between the rings, 
n is the normal stress on con-
tact contour L0 and � is the angle in Fig. 2. Stress 
n can
be calculated from the equation


n ¼ 
x þ 
y
2

þ 
x � 
y
2

cosð2�Þ þ txy sinð2�Þ ð39Þ

There is also shear stress tn on the contact contour L0,
which in general also affects the value of torque Mt.
However, in the present case, because of the symmetry,

its overall contribution is zero. The elements of the
stress tensor in formula (39) can be calculated from
expression (35).

Figure 9 shows torque Mt versus k3 ¼ e0=r0 for the
same example as in Fig. 8. The value of k4 ¼ �=r0 is
chosen so that at the critical point the maximum effective
stress 
E is equal to the yield stress 
Y.

The capacity of a shrink-fit assembly to avoid slip
between rings decreases as eccentricity increases. In the

Fig. 7 Maximum effective stress 
E versus k4 ¼ �=r0

Fig. 8 Relationship between k4 ¼ �=r0 and k3 ¼ e0=r0, if the effective stress 
E is equal to the yield stress 
Y

Fig. 6 Maximum effective stress 
E versus k1 ¼ r1=r0
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range k3 4 1:65 this decrease is much slower than at
greater values of k3. As in Fig. 8, the capacity to avoid
slip decreases rapidly when k3 5 2:753.

A plane stress state is assumed in all examples pre-
sented here. Similar results can be obtained in the case
of a plane strain state.

6 CONCLUSIONS

On the basis of a suitable choice of function ’�ð�Þ, the
closed and finite-form solution of a shrink fit between
an eccentric and a centric circular annulus in the elastic
domain has been presented.

On the basis of numerical examples it can be con-
cluded that eccentricity does not affect greatly the maxi-
mum effective stress in a shrink-fit assembly, except at
greatest values of eccentricities. The value of the torque
that can be borne by a shrink-fit assembly and still
avoid slip decreases increasingly rapidly with increasing
eccentricity.

One possible practical application of this theory is in
the case of shrink-fitted ‘snail-cams’.

In future, it would be useful to treat this problem also
in the elastoplastic domain. It can be seen that, even at
relatively small values of displacement jump, the maxi-
mum effective stress can easily exceed the yield stress of
a given material.
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Fig. 9 Torque Mt which can be borne by a shrink-fit assembly and still avoid slip versus k3 ¼ e0=r0
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