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Slovenia

a)Author to whom correspondence should be addressed: miha.brojan@fs.uni-lj.si

ABSTRACT

In this paper, we study how the fluid flow near the surface of a monocrystalline body is affected by the surface properties due to atom-
surface scattering. We propose a toy model for this system by parameterizing the surface with a periodic function of the tangential position.
This allows us to derive the velocity probability density function in the Knudsen layer and determine statistical averages of fluid velocity and
stress tensor components in the region of interest. The results of this analysis provide a potentially more fundamental and accurate explana-
tion for empirically observed phenomena such as the no-slip boundary condition, boundary layer formation, and the onset of hydrodynamic
instability.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0078745

I. INTRODUCTION

We consider the problem of fluid flow in a semi-infinite domain
bounded by the surface of a solid body (wall) and assume that the sur-
face moves with a constant velocity along a stationary body of fluid.
The setup is shown by Fig. 1.

This setup represents a simple model of fluid motion induced by
a translating body adjacent to the fluid, where we call this mode of
fluid motion a boundary layer. Understanding the formation and evo-
lution of boundary layers depending on various external parameters is
of great importance in different branches of physics and engineering.
For example, boundary layers determine hydrodynamic and aerody-
namic characteristics of ships and aircraft, they influence convective
heat transfer in steam and gas turbines, which determines their opera-
tional temperature ranges, they are the cause behind the Magnus effect
experienced by rotating bodies moving through fluids, and they appear
in various other fields, such as microfluidics, sediment transport, and
meteorology.

The problem of boundary layer formation and evolution is usu-
ally considered to have been well understood for some time, as solu-
tions of, for example, Navier–Stokes equations describing the
boundary layer velocity field have been known for some time.
Furthermore, the linear relationship between fluid velocity and shear
stress is a well-known fact. However, theoretical deliberations explain-
ing this phenomenon have made an assumption (simplification) that

the surface along which a boundary layer is generated is ideally flat
with no geometric perturbations on any length scale. While the surface
of a solid body may appear flat on the macroscopic length scale, it is in
fact corrugated on the atomic length scale (�10�10 m). We reason
that this corrugation affects fluid velocity and stress tensor compo-
nents, that is, boundary conditions that appear in the theoretical prob-
lems previously mentioned, and that it is the cause of tangential stress
present at the fluid-solid boundary as well as perturbations, which lead
to flow instability and the onset of turbulence. Our intent to under-
stand fluid behavior in the vicinity of the surface is therefore also moti-
vated by practical applications, such as development of wall functions
utilized in computational fluid dynamics, which would account for
surface characteristics and allow for more physically accurate and real-
istic calculations. Understanding the dependence of boundary layer
formation, evolution, and its stability on the characteristics of the sur-
face boundary would therefore enable us to design superior turboma-
chinery, ships, and aircraft and allow us to gain a more complete
understanding of various natural phenomena.

The flow of fluid past rough surfaces or surfaces with spatially
variable geometry is an active field of research, as can be seen from the
comprehensive review by Kadivar et al.1 Several papers have been
written which analyze the problem through the formalism of contin-
uummechanics and numerical simulations, such as those by Dharaiya
and Kandlikar,2 as well as by Rouhi et al.3 Theoretical analysis of the

Phys. Fluids 34, 022103 (2022); doi: 10.1063/5.0078745 34, 022103-1

VC Author(s) 2022

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0078745
https://doi.org/10.1063/5.0078745
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0078745
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0078745&domain=pdf&date_stamp=2022-02-04
https://orcid.org/0000-0002-3342-9562
mailto:miha.brojan@fs.uni-lj.si
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0078745
https://scitation.org/journal/phf


influence of atom-surface scattering on the dynamics of fluid flow near
surfaces is also a field of research, which has seen plenty of progress.
Comprehensive reviews of the subject are provided by Cercignani,4

Sharipov and Seleznev,5 and Roldughin and Zhdanov,6 while Golse
and Takata analyzed properties of the Boltzmann equation, which are
important when analyzing bounded flows and boundary layers in
Refs. 7 and 8. A number of papers pertaining to the analysis of shear
flows in different settings by means of the kinetic theory of gases, and
determine solutions to the Boltzmann equation and slip coefficients
while assuming various scattering models at fluid solid boundaries, for
example, by Cercignani,9,10 Loyalka,11,12 Ku�sčer and Klinc,13 Siewert
and Garcia,14–16 Wu and Struchtrup,17 Nguyen and Graur,18 and
Chen19 have been written, while several authors tackled similar prob-
lems using both a combination of kinetic theory formalism and molec-
ular dynamics simulations, such as Wang et al.20,21 Several papers have
also been written which determine slip coefficients at fluid solid bound-
aries using the Kubo–Greenwood formalism, such as those by Nakano
and Sasa,22 and De la Torre and Duque-Zumajo.23

Other authors used solutions of the Boltzmann equation for
physically similar cases to obtain expressions for velocity fields, for
example, by Gross, Jackson, and Ziering24–26 and Aoki.27 Various
other papers present how gas-surface scattering models form the basis
for determining boundary conditions used to solve either the
Boltzmann equation (kinetic theory) or Navier–Stokes equations (con-
tinuum-based approach), such as papers authored by Brull,28 Coron,29

Shen, Chen et al.,30 Hattori et al.,31 Aoki et al.,32 Kosuge et al.,33 and
Duan.34 Other papers analyzed flow of gases near solid surfaces using
both analytical and numerical methods (lattice Boltzmann method or
molecular dynamics) in the scope of kinetic theory, such as Ben-Ami
and Manela,35 while other authors considered numerical approaches
only, such as Silva et al.,36,37 Mohammed and Reis,38 Shan,39 Ou and
Chen,40 Liang et al.,41 and Varghese et al.42 Most of these previously
mentioned deliberations assumed simple atom-surface scattering
models, such as the diffuse-specular scattering kernel, which does not
account for any spatial variations of scattering properties, and focused
on solving the Boltzmann equation and determining statistical aver-
ages in an entire domain of fluid adjacent to the surface in question.

In the present study, we determine expressions for velocity and
stress tensor components in the Knudsen layer, that is, at the solid–
fluid boundary, while accounting for spatial variations of scattering
properties caused by the surface corrugation. We achieve this by
describing these variables as statistical averages of corresponding
microscopic variables, wherein we average them over probability

density functions (PDFs), which depend on the position along the sur-
face and its properties. We assume that the fluid behaves as an ideal
gas, which means that there are no long-range intermolecular forces
and that there is no adsorption of molecules on the surface. We also
assume that surface corrugation occurs only in the x–y plane despite
the fact that crystals are three-dimensional objects and that scattering
along the z axis does not have a significant influence on the behavior
of fluid in the Knudsen layer as there is no (macroscopic) relative
motion in the direction of z axis. This renders our analysis consider-
ably easier.

We will solve the problem presented by determining the proba-
bility density function of particle velocities in the Knudsen layer and
using this function to obtain statistical averages of the fluid velocity
components as well as the stress tensor components. We will deter-
mine the previously mentioned probability density function by first
defining a conditional probability density function P, which deter-
mines the probability of a particle scattering off the surface with a cer-
tain velocity given some other velocity of incidence and can be
expanded as a trigonometric series of the tangential coordinate x.
Second, we will integrate the product of the velocity probability func-
tion pertaining to incident particles f�, which we assume to be a
Maxwell–Boltzmann distribution function, and the condition proba-
bility density function P in order to obtain the velocity probability den-
sity function of particles, which have scattered of the surface fþ. We
then combine f� and fþ to form a complete velocity probability func-
tion f and use to obtain the previously mentioned statistical averages.

Because of Galilean relativity of velocities, this setup is equivalent
to the flow of a fluid along the surface of a stationary solid body. This
model of a physical system can be parameterized in Cartesian coordi-
nates in the following way:

X 2 ð�1;1Þ;
Y 2 ½YS;1Þ;
Z 2 ð�1;1Þ:

(1)

We also introduce a reference system which moves in unison with the
surface, according to which we parameterize the model as

x 2 ½0;1Þ;
y 2 ½yS;1Þ;

z 2 ð�1;1Þ:
(2)

Surface corrugation is a consequence of the way potentials deter-
mining intermolecular interactions combine when the atoms, which
constitute a solid body, are arranged in a crystal lattice. If we choose to
describe the physical system under consideration with Cartesian coor-
dinates, we can parameterize the potential as

Uðx; y; zÞ ¼
1; y � fSðxÞ;
0; y > fSðxÞ;

(
(3)

where the function fSðxÞ is equal to

fSðxÞ ¼
h0
2
cos

2px
L0

; (4)

with h0 and L0 representing the peak-to-peak amplitude and wave-
length/wave period, respectively. Function fS defining the shape of the

FIG. 1. Fluid flow induced by a moving surface.
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potential at the atomic length scale, where corrugation is apparent,
therefore represents the lower bound of fluid domain yS from Eq. (2).
This means that yS ¼ fSðxÞ. However, as we make the transition in
our description from the atomic to the macroscopic length scale, we
can simplify this by stating that yS � 0, which means that the domain
boundaries are (approximately) equal to

x 2 ½0;1Þ;
y 2 ½0;1Þ;

z 2 ð�1;1Þ:
(5)

The physical system under consideration is displayed in Fig. 2.
Boundary values of velocity and stress tensor components are in

the classical continuum mechanics-based analysis assumed to hold true
in the direct vicinity of the surface, that is, for y¼ 0. Since the macro-
scopic quantities are statistical averages of the microscopic equivalents,
boundary values near the surface are in fact valid in the region

x 2 ½0;1Þ;
y 2 ½yS; LKnÞ;
z 2 ð�1;1Þ;

(6)

where LKn is the thickness of the Knudsen layer. This is a part of the
fluid domain closest to the wall where gas atom–surface interactions
dominate interactions between individual gas molecules, as the likeli-
hood of gas molecule collision with the surface is significantly greater
than the likelihood of collisions between individual gas molecules. The
upper vertical boundary of the Knudsen layer can be defined as the
average vertical distance a molecule travels before colliding with
another molecule. Therefore, it is reasonable to assume that incident
and scattered molecules do not collide or otherwise interact while trav-
eling through the Knudsen layer.

The thickness of the Knudsen layer is usually of the same order
of magnitude as the molecular mean free path lmfp,

LKn ¼
2
3
lmfp ¼

ffiffiffi
2
p

3p
kBT
pd2

; (7)

where kB, T, p, and d are the Boltzmann constant (kB ¼ 1:380 648 81
�10�23 J/K), temperature, static pressure, and particle kinetic

diameter, respectively. The factor of 2
3 is present because it is equal to

the average height of a unit hemisphere, as particles will on average
travel a distance of 23 lmfp in the direction perpendicular to the surface.
Because the Knudsen layer thickness is of the order of the molecular
mean free path, it is miniscule compared to the characteristic dimen-
sions of the flow (when dealing with macroscopic fluid flows) at nor-
mal atmospheric conditions, but at the same time, it is several orders
of magnitude greater than the corrugation amplitude. This is why we
can neglect its physical size and claim that the values quantities have
in the Knudsen layer are equal to the values for y¼ 0, which defines
the fluid-solid contact line as given by Eq. (5). Vertical position of the
upper bound of the Knudsen layer in the global reference frame,
Eq. (1), shall henceforth be denoted as yKn.

Macroscopic quantities, such as density, velocity, and stress
tensor components as well as internal energy, can be derived
by statistically averaging their microscopic equivalents. This
operation calls for a probability density function (PDF) f,
f ðri; vi; tÞ; i 2 fx; y; zg, which determines the probability density of
the N particles present in the physical system being at certain posi-
tions in space and having particular velocities. Statistical average of
a property pertaining to individual particles, which is a function of
position ri and particle velocity vi, is equal to the expression deter-
mined by the following integral:

Wðri; tÞ ¼ hwðri; viÞi

¼
ð ð ð

@P:S:
wðri; viÞ f ðri; vi; tÞ dvi dvj dvk; (8)

where @P:S: denotes all of the microstates in velocity phase space
which a particular system can occupy under specific conditions.
Furthermore, we can also take statistical averages over spatial coordi-
nates as shown here

WðtÞ ¼ hwðri; viÞi

¼
þ
@V

ð ð ð
@ P:S:

wðri; viÞ f ðri; vi; tÞ dvi dvj dvk dri drj drk; (9)

where we average over a spatial volume (a volume in coordinate space)
denoted by @V . We should note the important fact that statistical
averages of microscopic variables correspond to variables relevant in
continuum mechanics as long as the PDF is not spatially dependent
on length scales smaller than the minimum length scale Lmin at which
the assumption of continuum holds true. Because statistical averaging
only makes sense when an ensemble enclosed by some volume con-
tains a sufficient number of particles, the assumption of continuum
breaks down at some point with decreasing length scales determining
the volume, at which point statistical averages do not correspond to
macroscopic, that is, continuum variables, but rather some sort of
mesoscopic variables (assumption of continuous matter makes it seem
as if we can determine values of particular variables for an infinite
number of points in space, when in fact we can do so only for a finite
number of points, which determine the positions of volume elements
that are sufficiently large for statistical averages to correspond to mac-
roscopic values). This means that any spatial variations of the PDF at
length scales smaller than Lmin will express themselves in the form of
intermediate mesoscopic quantities. Their spatial averages can still
represent quantities relevant to the continuum based description, but
spatial averaging may also filter out any variations present below Lmin.FIG. 2. Particle scattering on a monocrystalline surface.
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The probability density function corresponding to a particular physical
system is governed by the Boltzmann equation

@f
@t
þ vi

@f
@ri
þ Fi
mp

@f
@vi
¼ Qðf ; f Þ: (10)

Here, Fi represents the external force and Q(f, f) is the collision integral
operator and is, in general, determined by the expression

Qðf ; f Þ ¼
ð ð ð
ðf 01f 0 � f1f Þ giðvi; v1;iÞRðX; gÞ dX dv1;i; (11)

where giðvi; v1;iÞ is the absolute value of relative collisional velocities,
and RðX; gÞ is the collision cross section, which is generally a function
of the relative velocity g and solid angle X. Functions f1; f ; f 01, and f 0

are probability density functions pertaining to a pair of colliding par-
ticles determining the probabilities of pre- and post-collisional veloci-
ties. Throughout the text, primed and non-primed variables denote
quantities before and after collisions, either in the context of collisions
of particles in the bulk or collisions of particles with the solid surface.

When colliding particles have equal masses, their post-collisional
velocities are determined as

v1;i ¼ v01;i � ðgjkjÞki;
vi ¼ v0i � ðgjkjÞki;

(12)

where ki stands for the unit vector element pointing from the mass
center of one colliding particle to another. These relations can be
derived from the equations describing conservation of momentum

mpv
0
i þmpv

0
1;i ¼ mpvi þmpv1;i; (13)

and energy

1
2
mpv

0
iv
0
i þ

1
2
mpv

0
1;iv
0
1;i ¼

1
2
mpvivi þ

1
2
mpv1;iv1;i: (14)

It is also worth mentioning that the validity of the Boltzmann equation
at different length and time scales is still a subject of intense discussion,
with a number of papers written regarding this issue, including works by
Lanford,43 Illner and Pulvirenti,44 Kuzovlev,45 Esposito et al.,46 and
Gallagher.47 Kuzolev states that in cases when one can expect the molec-
ular velocity probability density function to be spatially inhomogeneous
on length scales close to or smaller than the molecular mean free path
due to spatially inhomogeneous external forces or kinematic consider-
ations, as in our case, the validity of Boltzmann equation, as given by Eq.
(10), is debatable, or the expression for the collision operator given by
Eq. (11) takes on a different form. This issue becomes less contentious if
the assumptions of the model allow us to neglect the collision operator.

In general, solutions to the Boltzmann equation are eigenfunc-
tions of the collision operator Q(f, f) as given by Eq. (11), or some lin-
ear combination of them. The simplest possible solution for a system
in thermodynamic equilibrium is the Maxwell–Boltzmann distribution/
probability density function

f0 ¼ n
mp

2pkBT

� �3
2

e�
mpðvi�viÞ2

2kBT ; (15)

where n is the number density (number of particles per unit of vol-
ume). Another solution, which describes cases when the system is
slightly out of equilibrium, is

f ¼ f0 1� A
T
ci
@T
@ri
�mp B

kBT
cicj

@ vi

@rj

 !
; (16)

where we introduced relative velocity ci ¼ vi � vi, with vi being the
statistical average of a velocity component as determined by Eq. (8).
Functions A and B are functions of density, temperature, and the abso-
lute value of relative velocity: Aðq; c2;TÞ;Bðq; c2;TÞ, and are deter-
mined by the eigenvalues of the Boltzmann integral collision operator.

In the region close to the wall whose bounds are defined by
expression Eq. (6), we assumed that no collisions between individual
particles take place. This means that we can deal with a simplified
Boltzmann equation which lacks the integral collision operator, the
solutions of which are independent of non-equilibrium contributions.
Therefore, we assume that velocity probabilities in the Knudsen layer
region are determined by a function proportional to Eq. (15). We can
write the velocity PDF of particles as a sum of contributions determin-
ing probabilities pertaining to incident and scattered particles, as
shown here

f ¼ 1
2
ð1� sgnðvyÞÞf �ðviÞ þ

1
2
ð1þ sgnðvyÞÞf þðviÞ; (17)

where f �ðviÞ and f þðviÞ are the PDFs pertaining to the incident (vy
< 0) and scattered particles (vy > 0) as shown in Fig. 3. Because we
assumed that incident and scattered particles do not interact while
traveling through the Knudsen layer, we can simply split Eq. (17) into
two parts, where fþ is obtained by some transformation of f� which is
a consequence of scattering.

Before we discuss these functions further, we introduce transfor-
mations of the velocity coordinates which enables us to simplify the
description. These transformations are shown in Fig. 4. First, we trans-
form particle velocities from being relative to the global reference
frame as shown in Fig. 1 to being relative to the reference frame which
moves in unison with the translating surface

u0x ¼ v0x � w;

u0y ¼ v0y;

u0z ¼ v0z;

ux ¼ vx � w;

uy ¼ vy;

uz ¼ vz;

(18)

where ux, uy, and uz are velocities in the local reference frame, Eq. (2).
Second, we transform velocity coordinates into cylindrical form

FIG. 3. Knudsen layer (particles and the wall are not drawn to scale).
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u0x ¼ u00 sin h0;

u0y ¼ u00 cos h
0;

u0z ¼ u0z;

ux ¼ u0 sin h;

uy ¼ u0 cos h;

uz ¼ uz:

(19)

Velocity components relative to the global frame of reference are
therefore equal to

v0x ¼ u00 sin h0 þ w;

v0y ¼ u00 cos h
0;

v0z ¼ u0z;

vx ¼ u0 sin hþ w;

vy ¼ u0 cos h;

vz ¼ uz:

(20)

These transformations enable us to describe the PDFs in terms of the

absolute value of planar velocity u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
, which we assume to

be a quantity conserved during interactions with the surface as we
assume collisions to be elastic (the same holds true for the equivalent
quantity pertaining to velocities in the global reference frame

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
).

The determinant of the Jacobian matrix of the two combined
transformations is equal to

JðuiÞ ¼ detðJðuiÞÞ ¼

@vx
@u0

@vx
@h

@vx
@uz

@vy
@u0

@vy
@h

@vy
@uz

@vz
@u0

@vz
@h

@vz
@uz

������������

������������
¼ �u0: (21)

II. ANGULAR PROBABILITY DENSITY OF SCATTERING

This part of the paper addresses the function Phðh0; h; xÞ, which
is used to obtain an expression for Eq. (17). This function determines
the conditional probability density of particles scattering off the surface
at an angle h relative to the y axis under the condition of particles
being incident at an angle h0, and will from this point forth be referred
to as the angular probability density of scattering. Figure 2 provides a

graphical description of the physical system, where the potential field
shown in the image is defined by the previously mentioned Eq. (4).

An expression for the aforementioned function has been
obtained by methods, which follow from the formalism of quantum
mechanics. Its derivation presumes elastic scattering of atoms from
crystal surfaces and therefore relies on the hard corrugated surface
model. Basic formalism, which represents the basis for theoretical
analysis of gas-surface scattering, is explained in considerable detail by
Goodman.48 The aforementioned expression is a result of work by
Ford and Wheeler,49 Masel et al.,50 Manson,51 Goodman,52 and
Garibaldi et al.53 Further theoretical deliberations concerning this
problem are presented in papers authored by Farias and Rieder,54

Gumhalter,55 Guantes et al.,56 and Manson.57 According to these
references, angular probability density of scattering Phðh; h0Þ along the
x axis can be written as a Fourier series of the form

Phðh; h0; rjÞ ¼
X
m2Z

PGðh; h0Þ ei
2pmx
L0 ; (22)

where x is the tangential coordinate, i denotes the imaginary unit, and
m belongs to the set of integers. Coefficients PGðh; h0Þ are in accor-
dance with the previously mentioned references equal to

PGðh; h0Þ ¼
cos h

cos h0
jAGj2: (23)

If scattering occurs along the x axis, using certain approximations
coefficients displayed above can be written as

PGðh; h0Þ ¼
cos h

cos h0
J20 ðcÞ J2jmjðcÞ; (24)

where JmðxÞ is the m-th order Bessel function of the first kind, while
the variable c is equal to

c ¼ 1
2
h0k ðcos h0 þ cos hÞ; (25)

where k is the wave vector corresponding to the particle De Broglie
wavelength kDB. It accounts for the wave-like behavior of massive (in
the sense of possessing mass) particles impinging on the surface and is
related to their mass and velocity (i.e., momentum) as follows:

kDB ¼
h

mpv0
; (26)

where h is the Planck’s constant (h ¼ 6:626 070 15� 10�34 J s), while
mp and v0 are the particle mass and the magnitude of its velocity rela-
tive to the inertial frame of reference in which the surface is static. The
corresponding wave vector is consequently equal to

k ¼ 2p
kDB
¼ 2p

mpv0
h

: (27)

Because the product of the particles’ wave vector k and the peak-to-
peak amplitude h0 is typically a very small number, we can make use
of the following approximation, which holds true for small values of c
ðc� 1Þ:

J2jmjðcÞ �

1
2
c

� �2jmj

ðjmj!Þ2
; (28)

FIG. 4. Kinematic quantities that appear in Eqs. (18)–(20).
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which therefore allows us to simplify the expression Eq. (23) to the fol-
lowing form:

PGðh; h0Þ ¼

1
4
h0k

� �2jmj

ðjmj!Þ2
cos h

cos h0
cos hþ cos h0ð Þ2jmj; (29)

where we assumed that scattering occurs along the x axis. Therefore,
the angular component of the probability of transition Phðh; h0; xÞ as
given by Eq. (22) is equal to

Phðh; h0; xÞ ¼
cos h

cos h0
X1

m¼�1

1
4
h0k

� �2jmj

ðjmj!Þ2
� cos hþ cos h0ð Þ2jmjei

2pmx
L0 :

(30)

Using j to denote the following coefficient:

j ¼ 1
4
h0k ¼

p
2
mpv0

h0
h
; (31)

we can rewrite the expression given by Eq. (30) in a form which elimi-
nates absolute values of the summation indexm,

Phðh;h0;xÞ¼
cosh

cosh0
2
X1
m¼1

j2m

ðm!Þ2
cosh0 þcoshð Þ2m cos 2pm

L0
x

� �
þ1

 !
:

(32)

This can be further simplified to

Phðh; h0; xÞ ¼
1
2
cos h

cos h0
I0 2jðcos hþ cos h0Þei

px
L0

� �h
þI0 2jðcos hþ cos h0Þe�i

px
L0

� �
� 2
i
: (33)

Here, I0 is the zeroth-order modified Bessel function of the first kind.
While this expression is the angular probability density of scattering in
its most compact possible form, we will in further instances refer to
the form given by Eq. (32).

III. DETERMINING THE COMPLETE PROBABILITY
DENSITY FUNCTION

This part of the paper presents the methods which we use to
determine the expression for the complete probability density function
given in Eq. (17).

Function f �ðv0iÞ, which appears in Eq. (17), is a product of two
separate functions

f �ðv0iÞ ¼ f0ðv00Þ fincðh
0Þ; (34)

where we used primed variables to denote that they pertain to particles
entering the region [velocity transformations as given by Eq. (20) are
also valid for primed variables]. Quantities, which appear in the
expression, are shown in Fig. 4. Function fincðh0Þ is the probability
density function of a particle entering the region at a certain angle h0

relative to the y axis. We assume it to be equal to fincðhÞ ¼ p
2 cos h

0,
where h0 2 ½p2 ; 3p2 	 (the factor of p

2 is present for purposes of normaliza-
tion). The functional form of finc is justified by observing the fact that
if a particle undergoes a collision with another particle right at the
upper bound of the region near the surface, it will certainly enter the

region if its velocity component points straight downward, meaning
that h0 ¼ p. Conversely, the particle will certainly not enter the region
if the angle h0 is either h0 ¼ p

2 or h0 ¼ 3p
2 (Fig. 4 should serve as an

additional graphical explanation of this fact). With function f0 given
by Eq. (15), we can assert that function f �ðv0iÞ is therefore equal to

f �ðv0i; yKnÞ ¼
p
2
n

mp

2pkBT

� �3
2

e�
mpðu0 02þuz 02Þ

2kBT cos h0: (35)

Determining fþ in Eq. (17) is achieved by integrating the product of
f� and the full conditional probability density function P, which deter-
mines the probability of particles with some initial velocity, described
by parameters u00; h

0, and u0z , scattering off the surface with a final
velocity determined by u0; h, and uz. This is given by the expression

f þðu0; h; uz; x; yKnÞ ¼
ð ð ð

v0y<0
f �ðu00; h0; u0zÞ

� Pðu0; u00; h; h0; uz; u0z; xÞ du00 dh0 duz; (36)

where we integrate over velocities corresponding to particles
traveling toward the surface. Conditional probability density
Pðu0; u00; h; h0; u0z; uz; xÞ can be written as a product of three separate
functions

Pðu0; u00; h; h0; uz; u0z; xÞ ¼
1
pJ

Pu0ðu0; u00ÞPhðh; h0; xÞPuz ðuz; u0zÞ;

(37)

where J is the Jacobian from Eq. (21). Because momentum and kinetic
energy are conserved when particles scatter from the surface elastically,
functions Pu0ðu0; u00Þ and Puz ðuz; u0zÞ are equal to

Pu0ðu0; u00Þ ¼ dðu0 � u00Þ;
Puz ðuz; u0zÞ ¼ dðuz � u0zÞ;

(38)

while the angular probability density of scattering is given by Eq. (32).
The full conditional probability density function from Eq. (37) is
therefore given by

Pðu0; u00; h; h0; uz; u0z; x; yKnÞ

¼ 1
pJ

dðu0 � u00Þ dðuz � u0zÞ

� cos h
cos h0

2
X1
m¼1

jm

m!

� �2

cos h0 þ cos hð Þ2mei
2pm
L0

x þ 1

 !

¼ 2
pJ

dðu0 � u00Þ dðuz � u0zÞ

� cos h

cos h0
I0ð2j ei

p
L0
x ðcos hþ cos h0ÞÞ � 1

h i
; (39)

where I0 is the zeroth-order modified Bessel function of the first kind.
Coefficient denoted by j in the expression above is in accordance with
Eq. (32) equal to

j ¼ p
2

h0mp

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u020 þ u02z

q
¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u020 þ u02z

q
; (40)

where the magnitude of velocity relative to the surface is defined in
accordance with Eq. (19), while Fig. 4 can serve as additional
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explanation. Primed variables u00 and u
0
z appear in the expression for j

because it pertains to incident particles. In order to solve the integral
in Eq. (36), we need to introduce the following transformation of vari-
ables: h0 ! p� h0 in Eq. (35). Its purpose is to ensure that the way we
defined angle h0 in this expression conforms to the definition of the
incident and scattering angles, which appear in the angular probability
density function of scattering, Eq. (32), and are also shown in Fig. 4.
This transformation also requires us to modify the range of integration
over h0, which becomes h0 2 ½p2 ;� p

2	. Integration ranges of u00 and u0z
are equal to u00 2 ½w;1Þ and u0z 2 ð�1;1Þ. Accounting for the fact
that cos ðp� h0Þ ¼ �cos h0, we can rewrite Eq. (36) as

f þðu0; h; uz; x; yKnÞ ¼
1
2
n

mp

2pkBT

� �3
2

e�
mpðu20þu

2
z Þ

2kBT

� cos h pþ 2F 0ðu0; h; uz; xÞð Þ; (41)

where the functionF 0 is given by the expression

F 0ðu0; h; uz; xÞ ¼ p
X1
m¼1

ðc1u0Þ2m

ðm!Þ2
X2m
k¼0

2m

k

 !
coskh

22m�k

"

�
X2m�k
n¼0

2m� k

n

 !
sinc

p
2
ð2ðn�mÞ þ kÞ

� �#

� cos
2pm
L0

x

� �
: (42)

The definition of c1 is evident from Eq. (41). Two important steps
in solving the integral over possible velocities as given by Eq. (36),
which results in Eqs. (41) and (42), are presented by Eqs. (A1) and
(A2) in the Appendix. The full velocity probability density function of
particles moving through the Knudsen region as defined by (17) is
therefore equal to

f ðu0;h;uz;x; yKnÞ ¼
p
4
n

mp

2pkBT

� �3
2

e�
mpðu20þu

2
z Þ

2kBT cosh 1� sgnðu0 coshÞð Þ

þ1
4
n

mp

2pkBT

� �3
2

e�
mpðu20þu

2
z Þ

2kBT

� cosh pþ 2F 0ðu0;uz;h;xÞð Þ
� 1þ sgnðu0 coshÞð Þ: (43)

We abandon the prime notation pertaining to incident particles at this
point in the text.

IV. VELOCITY COMPONENTS IN THE KNUDSEN LAYER

This section of the paper deals with the fluid velocity components
in the Knudsen layer and demonstrate the methodology used to obtain
expressions determining these quantities. Velocity components are
determined by statistically averaging particle velocities using the
method described by Eq. (8), while the probability density function is
taken to be given by Eq. (43). At this point, it should be noted that
because the probability density function contains spatial dependence
on the length scale L0, which is significantly smaller than the minimum
length scale Lmin at which the assumption of continuum holds true,
resulting statistical averages will correspond to mesoscopic quantities.

Statistical average of some velocity component is equal to

vi ¼
1
n

ð1
�1

ð1
�1

ð1
�1

vi f ðri; vi; tÞ dvi dvj dvk; (44)

where we integrate over all possible velocities. In accordance with this
expression, we can determine the statistical average of the tangential
velocity component to be equal to

vxðx; yKn;wÞ ¼ vx ¼ u0 sin ðhÞ þ w

¼ 1
n

ð ð ð
uy<0

u0 sin h f � ð�u0Þ du dh duz
"

þ
ð ð ð

uy>0
u0 sin h f þ ð�u0Þ du dh duz

#

þw
n

ð ð ð
uy<0

f �ð�u0Þ du0 dh duz
"

þ
ð ð ð

uy>0
f þð�u0Þ du0 dhduz

#
: (45)

The expression above contains four different multivariate inte-
grals, which are evaluated over intervals corresponding to conditions
vy < 0 (particles moving toward the surface) and vy > 0 (particles
being scattered off the surface). Integration ranges, which correspond
to the condition uy < 0, are as follows: ½p2 ; 3p2 	 for h, ½w;1Þ for u0 and
½�1;1	 for uz, while ranges that correspond to condition uy > 0 are
as follows: ½p2 ;� p

2	 for h, ½w;1Þ for u0 and ½�1;1	 for uz.
The first and the second terms in Eq. (45) are equal toð ð ð

uy<0
u0 sin hf �ðu0; h; uzÞ ð�u0Þ du0 dh duz ¼ 0 (46)

and ð ð ð
uy>0

u0 sin h f þðu0; h; uzÞ ð�u0Þ du0 dh duz ¼ 0; (47)

while the third term is equal toð ð ð
uy<0

f �ðu0; h; uzÞð�u0Þ du0 dh duz ¼
1
2
ne�

mpw2

2kBT : (48)

The fourth term is given byð ð ð
uy>0

f þðu0; h; uz; xÞð�u0Þ du0 dh duz

¼ � 1
2
n

mp

2pkBT

� �3
2
ð1
�1

e�
mpu2z
2kBT duz

�
ð�p

2

p
2

ð1
w
u0e
�

mpu20
2kBT cos h ðpþ 2F 0ðu0; h; uz; xÞÞ du0 dh; (49)

where we can observe that the expression in parentheses itself consists
of two terms. The result of integrating over the first of two terms is
equal to Eq. (48), while the result of integrating over the second is
equal to

� mp

2pkBT
n
ð�p

2

p
2

ð1
w
u0e
�

mpu20
2kBT coshF 0ðu0;h;0;xÞdu0dh¼

ffiffiffi
p
p

2
F 2ðx;wÞ:

(50)
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In determining the expression above, we decided to neglect the depen-
dence of j on the lateral velocity component uz, which can be
expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 þ u2z

p
� u0. This is valid because we are dealing

with a quasi-two-dimensional system where we can neglect the influ-
ence of motion in the z-direction, and solutions which are based on
this simplification differ from solutions, which are not only in a multi-
plicative factor. FunctionF 2, which appears in Eq. (50), is given by

F 2ðx;wÞ ¼
X1
m¼1

c21
c2

� �m

ðm!Þ2
C mþ 1;

mpw2

2kBT

� �

�
X2m
k¼0

2m

k

 !
2k�2m

C
kþ 2
2

� �

C
kþ 3
2

� �X2m�k
n¼0

2m� k

n

 !2
6664

� sinc
p
2
ð2ðn�mÞ þ kÞ

� �3775cos 2pm
L0

x

� �
; (51)

where c2 represents the constant factor

c2 ¼
mp

2kBT
: (52)

Tangential velocity vx is therefore equal to

vxðx; yKn;wÞ ¼ w e�
mpw2

2kBT þ
ffiffiffi
p
p

2
F 2ðx;wÞ

� �
: (53)

Statistical average of the normal velocity component is equal to

vyðx; yKn;wÞ ¼ hvyi ¼ hu0 cos hi

¼ 1
n

ð ð ð
vy<0

u0 cos hf
�ð�u0Þ du0 dh duz

"

þ
ð ð ð

vy>0
u0 cos hf

þð�u0Þ du0 dh duz

#
; (54)

and like before, it consists of several parts. The first part is equal toð ð ð
vy<0

u0 cosh f
�ð�u0Þ du0 dh duz ¼ �n

mp

8kBT
I1ðwÞ; (55)

where I1ðwÞ is the integral over u0 and h, while the second part is
equal toð ð ð

vy>0
u0 cosh f

þð�u0Þ du0 dh duz

¼ � 1
2
n

mp

2pkBT

� �3
2
ð1
�1

e�
mpu2z
2kBT duz

�
ð�p

2

p
2

ð1
w
u20e
�

mpu20
2kBT cos 2h ðpþ 2F 0ðu0; h; xÞÞ du0 dh

¼ n
mp

8kBT
I1ðwÞ þ

1
2
n

ffiffiffiffiffiffiffiffiffiffi
2kBT
mp

s
F 1ðx;wÞ: (56)

FunctionF 1ðx;wÞ, which appears in Eq. (56), is given by

F 1ðx;wÞ ¼
X1
m¼1

c21
c2

� �m

ðm!Þ2
C mþ 3

2
;
mpw2

2kBT

� �

�
X2m
k¼0

2m

k

 !
2k�2m

C
kþ 3
2

� �

C
kþ 4
2

� �X2m�k
n¼0

2m� k

n

 !2
6664

� sinc
p
2
ð2ðn�mÞ þ kÞ

� �3775cos 2pm
L0

x

� �
: (57)

As we can see, the expression given by Eq. (55) and the second term in
Eq. (56) cancel each other out, which means that normal velocity vy is
therefore equal to

vyðx; yKn;wÞ ¼
p
4
vthF 1ðx;wÞ; (58)

where we used vth to denote the fluid thermal velocity, which is
defined as the mean of the velocity magnitude as

vth ¼
ffiffiffiffiffiffiffiffiffiffi
8kBT
pmp

s
: (59)

Mathematical expressions and equalities, which can serve as additional
explanation of the derivations of Eqs. (53) and (58), are shown in the
Appendix by Eqs. (A3)–(A5).

V. STRESS TENSOR COMPONENTS IN THE KNUDSEN
LAYER

This section of the paper deals with stress tensor components in
the Knudsen layer using the same method of statistical averaging,
given by Eqs. (8) and (17), as in Sec. IV.

Stress tensor component rij is obtained by statistically averaging
the flux of the ith component of momentum relative to the direction
parallel to the jth component of velocity. This can be expressed as

rij ¼ hmpðvi � viÞðvj � vjÞi

¼
ð1
�1

ð1
�1

ð1
�1

mpðvi � viÞðvj � vjÞ nðriÞ f ðri; vi; tÞ dvi dvj dvk;

(60)

where we integrate over all possible velocities. We first attend diagonal
stress tensor components rii, which are obtained as

rii ¼ hmpðvi � viÞðvi � viÞi
¼ mphðv2i � 2vivi þ v2

i Þi
¼ mp hv2i i � nv2

i

� 	
: (61)

Since this identity holds true for all three diagonal stress tensor com-
ponents, it is simple to observe that we only need to determine statisti-
cal averages of the squares of velocity components v2i , while vi is the
statistical average of a velocity component given by Eq. (44). Stress
tensor component rxx is equal to

rxxðx; yKn;wÞ ¼ mp hv2xi � nv2x
� 	

; (62)

and the statistical average of v2x is equal to
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hv2xi ¼ h u0 sin hþ wð Þ2i ¼ hu20 sin2hþ 2wu0 sin hþ w2i: (63)

The second term in statistical average above is equal to zero, as can be
deduced from Eq. (A4), while the third term is equal to

hw2i ¼ w2 e�
mpw2

2kBT þ
ffiffiffi
p
p

2
F 2ðx;wÞ

� �
: (64)

The first term in Eq. (63) can be evaluated as

hu20 sin2hi ¼
ð ð ð

vy<0
u20 sin

2hf � ð�u0Þ du0 dh duz

þ
ð ð ð

vy>0
u20 sin

2hf þ ð�u0Þ du0 dh duz: (65)

The two terms in the previous expression are equal toð ð ð
vy<0

u20 sin
2hf � ð�u0Þ du0 dh duz

¼ 1
3
n
kBT
mp

e�
mpw2

2kBT 1þmpw2

2kBT

� �
(66)

and ð ð ð
vy>0

u20 sin
2hf þ ð�u0Þ du0 dh duz

¼ n
kBT
mp

1
3
e�

mpw2

2kBT 1þmpw2

2kBT

� �
þ

ffiffiffi
p
p

2
F 3ðx;wÞ

� �
; (67)

where the functionF 3 is equal to

F 3ðx;wÞ ¼
X1
m¼1

c21
c2

� �m

ðm!Þ2
C mþ 2;

mpw2

2kBT

� �

�
X2m
k¼0

2m

k

 !
2k�2m

C
kþ 2
2

� �

C
kþ 5
2

� �X2m�k
n¼0

2m� k

n

 !2
6664

� sinc
p
2
ð2ðn�mÞ þ kÞ

� �3775cos 2pm
L0

x

� �
: (68)

Combining the terms, given by Eqs. (53), (64), (66), and (67) in the
proper manner, we arrive at the expression for the stress tensor com-
ponent rxx, which is equal to

rxxðx; yKn;wÞ ¼ p0
2
3
e�

mpw2

2kBT 1þmpw2

2kBT

� �
þ

ffiffiffi
p
p

2
F 3ðx;wÞ


 �

þqw2 e�
mpw2

2kBT þ
ffiffiffi
p
p

2
F 2ðx;wÞ

� �


� e�
mpw2

2kBT þ
ffiffiffi
p
p

2
F 2ðx;wÞ

� �2
#
; (69)

where p0 is the thermodynamically defined pressure as given by the
ideal gas law p0 ¼ nkBT .

Stress tensor component ryy is given by

ryy ¼ mp hv2yi � nv2y
� �

; (70)

and the statistical average of v2y is equal to

hv2yi ¼ hu20 cos2hi

¼
ð ð ð

vy<0
u20 cos

2h f � ð�u0Þ du0 dh duz

þ
ð ð ð

vy>0
u20 cos

2h f þ ð�u0Þ du0 dh duz: (71)

The two terms in the previous equation are equal toð ð ð
vy<0

u20 cos
2h f � ð�u0Þ du0 dh duz

¼ 2
3
n
kBT
mp

e�
mpw2

2kBT 1þmpw2

2kBT

� �
(72)

andð ð ð
vy>0

u20 cos
2h f þ ð�u0Þ du0 dh duz

¼ 2
3
n
kBT
mp

e�
mpw2

2kBT 1þmpw2

2kBT

� �
þ

ffiffiffi
p
p

n
kBT
mp

F 4ðx;wÞ; (73)

where the functionF 4 equals to

F 4ðx;wÞ ¼
X1
m¼1

c21
c2

� �m

ðm!Þ2
C mþ 2;

mpw2

2kBT

� �

�
X2m
k¼0

2m

k

 !
2k�2m

C
kþ 4
2

� �

C
kþ 5
2

� �X2m�k
n¼0

2m� k

n

 !2
6664

� sinc
p
2
ð2ðn�mÞ þ kÞ

� �3775cos 2pm
L0

x

� �
: (74)

Combining the terms, given by Eqs. (58), (72), and (73), we obtain the
expression for the stress tensor component ryy, which equals

ryyðx; yKn;wÞ ¼ p0
4
3
e�

mpw2

2kBT 1þmpw2

2kBT

� �
þ

ffiffiffi
p
p

F 4ðx;wÞ

 �

� p
4

� �2

qv2thF
2
1ðx;wÞ: (75)

Stress tensor component rzz is accordingly equal to

rzzðx; yKn;wÞ ¼ mpðhv2z i � nv2zÞ: (76)

Because the statistical average of vz is zero as we assumed no net flow
in the z-direction, we only need to evaluate hv2z i in order to obtain Eq.
(76), which we do by solving
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hv2z i ¼ hu2zi

¼
ð ð ð

vy<0
u2z f

� ð�u0Þ du0 dh duz

þ
ð ð ð

vy>0
u2z f

þ ð�u0Þ du0 dh duz: (77)

The two terms in the previous equation are equal toð ð ð
vy<0

u2z f
� ð�u0Þ du0 dh duz ¼

1
2
n
kBT
mp

e�
mpw2

2kBT (78)

and ð ð ð
vy>0

u2z f
þ ð�u0Þ du0 dh duz

¼ 1
2
n
kBT
mp

e�
mpw2

2kBT þ
ffiffiffi
p
p

2
n
kBT
mp

F 2ðx;wÞ: (79)

Combining the terms, given by Eqs. (78) and (79), we arrive at the
expression for the stress tensor component rzz, which is equal to

rzzðx; yKn;wÞ ¼ p0 e�
mpw2

2kBT þ
ffiffiffi
p
p

2
F 2ðx;wÞ

� �
: (80)

Expressions (69), (75), and (80) can be combined to obtain an expres-
sion for static pressure p as a function of x andw in the following way:

pðx; yKn;wÞ ¼ p0 e�
mpw2

2kBT 1þmpw2

3kBT

� �


þ
ffiffiffi
p
p

3
1
2
F 3ðx;wÞ þF 4ðx;wÞ þ

1
2
F 2ðx;wÞ

� �

�p
6
F 2

1ðx;wÞ
�
þ 1
3
qw2 e�

mpw2

2kBT þ
ffiffiffi
p
p

2
F 2ðx;wÞ

� �


� e�
mpw2

2kBT þ
ffiffiffi
p
p

2
F 2ðx;wÞ

� �2�
; (81)

where functions F 1; F 2; F 3, and F 4 are given by Eqs. (57), (51),
(68), and (74).

We now turn our attention to non-diagonal components of the
stress tensor components of the stress tensor. The shear stress present
is in our case described by the component ryx, which is in accordance
with Eq. (60) equal to

ryx ¼ mphðvx � vxÞðvy � vyÞi ¼ mpðhvxvyi � nvxvyÞ: (82)

Evaluating the statistical average of the product vxvy gives us

hvxvyi ¼ hðu0 sin hþ wÞu0 cos hi

¼ 1
2
u20 sin ð2hÞ

� 
þ whu0 cos hi

¼ nwvyðx; yKn;wÞ: (83)

The first term in the expression above is zero, which can be veri-
fied by examining Eq. (A4), while the second term is equal to the
product of wall velocity w and the statistical average of normal
velocity component vy. The shear stress given by ryx is accordingly
given by

ryxðx; yKn;wÞ ¼
p
4

qvthwF 1ðx;wÞ � 1� e�
mpw2

2kBT �
ffiffiffi
p
p

2
F 2ðx;wÞ

� �
;

(84)

where q is density (product of particle mass mp and number density
n), while thermal velocity is defined by Eq. (59). Functions F 1 and
F 2 are given by Eqs. (57) and (51). Mathematical expressions and
equalities, which can serve as additional explanation of the derivations
of Eqs. (69), (75), (80), (81), and (84), are shown in the Appendix by
Eqs. (A3), (A5), and (A6).

VI. SPATIAL AVERAGES OF QUANTITIES
IN THE KNUDSEN LAYER

In this section, we demonstrate how to obtain spatial averages of
quantities in the Knudsen layer along the direction defined by the x
axis. Spatial averages of quantities can be determined by evaluating the
following integral:

�w ¼ 1
x0

ðx0
0

wðxÞdx; (85)

where x0 approaches infinity: x0 !1. If we express functions
F 1a; F 2a; F 3a, and F 4a, which determine the quantities of interest
in the Knudsen layer as trigonometric series in the form of

f ðx;wÞ ¼
X1
m¼1

fmðwÞ cos
2pm
L0

x

� �
(86)

or

gðx;wÞ ¼
X1
m¼1

gmðwÞ cos
2pm
L0

x

� �
; (87)

we can notice that spatial averages of such functions are equal to zero

f ðwÞ ¼ lim
x0!1

1
x0

ðx0
0

X1
m¼1

fmðwÞ cos
2pm
L0

x

� �
dx

¼ lim
x0!1

1
x0

X1
m¼1

fmðwÞ
ðx0
0

cos
2pm
L0

x

� �
dx

¼ L0
2p

X1
m¼1

fmðwÞ lim
x0!1

1
x0

sin 2pm
x0
L0

� �� �
¼ 0: (88)

Because we are evaluating spatial averages of functions, which are peri-
odic on the interval ½0;1	, we do not need to evaluate the limit of the
expression. Furthermore, we can replace the interval of integration by
½� 1

2 L0;
1
2 L0	 if wðxÞ is periodic on this interval. It can also be shown

that spatial averages of products of functions, which, in general, have
the forms given by Eqs. (86) and (87) are equal to

f ðwÞgðwÞ ¼ 1
L0

ðL0
2

�L0
2

f ðx;wÞgðx;wÞ dx ¼ 1
2

X1
m¼1

fmðwÞgmðwÞ: (89)

A short proof of the formula presented above is given by Eq. (A7). An
immediate consequence of identity (89) is the following expression for
the spatial average of a square of some function of the form given by
Eq. (86), which equals
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f 2ðwÞ ¼ 1
L0

ðL0
2

�L0
2

f 2ðx;wÞ dx ¼ 1
2

X1
m¼1

f 2mðwÞ: (90)

According to Eq. (89), we can show that the spatial averages of velocity
components vx and vy in the Knudsen layer, given by Eqs. (53) and
(58), are therefore equal to

�vxðyKn;wÞ ¼
1
L0

ð L0
2

�L0
2

vxðx;wÞ dx

¼ we�
mpw2

2kBT (91)

and

�vyðyKn;wÞ ¼
1
L0

ð L0
2

�L0
2

vyðx;wÞ dx

¼ 0: (92)

We can take similar steps to determine spatial averages of the stress
tensor components pertaining to the Knudsen layer. Functions F 1

andF 2 can be expressed in the form of trigonometric series, given by

F 1ðx;wÞ ¼
X1
m¼1

amðwÞ cos
2pm
L0

x

� �
(93)

and

F 2ðx;wÞ ¼
X1
m¼1

bmðwÞ cos
2pm
L0

x

� �
; (94)

where coefficients am and bm are equal to

amðwÞ ¼

c21
c2

� �m

ðm!Þ2
C mþ 3

2
;
mpw2

2kBT

� �

�
X2m
k¼0

2m

k

 !
2k�2m

C
kþ 3
2

� �

C
kþ 4
2

� �
2
6664

�
X2m�k
n¼0

2m� k

n

 !
sinc

p
2
ð2ðn�mÞ þ kÞ

� �3775 (95)

and

bmðwÞ ¼

c21
c2

� �m

ðm!Þ2
C mþ 1;

mpw2

2kBT

� �

�
X2m
k¼0

2m

k

 !
2k�2m

C
kþ 2
2

� �

C
kþ 3
2

� �
2
6664

�
X2m�k
n¼0

2m� k

n

 !
sinc

p
2
ð2ðn�mÞ þ kÞ

� �3775: (96)

Consequently, by referring to the equality given by Eq. (90), averages
of stress tensor elements rxx, ryy, and rzz can be expressed as

�rxxðyKn;wÞ ¼
1
L0

ð L0
2

�L0
2

rxxðx; yKn;wÞ dx

¼ 2
3
p0e
�mpw2

2kBT 1þmpw2

2kBT

� �

þqw2 e�
mpw2

2kBT � e�
mpw2

kBT � p
8

X1
m¼1

b2mðwÞ
 !

; (97)

�ryyðyKn;wÞ ¼
1
L0

ð L0
2

�L0
2

ryyðx; yKn;wÞ dx

¼ p0
4
3
e�

mpw2

2kBT 1þmpw2

2kBT

� �
� p

4

X1
m¼1

a2mðwÞ
 !

; (98)

and

�rzzðyKn;wÞ ¼
1
L0

ðL0
2

�L0
2

rzzðx; yKn;wÞ dx ¼ p0e
�mpw2

2kBT : (99)

Similarly, we can show that the expression determining the spatial
average of static pressure p in the Knudsen layer is equal to

�pðyKn;wÞ ¼
ð L0

2

�L0
2

pðx; yKn;wÞ dx

¼ p0e
�mpw2

2kBT 1þmpw2

3kBT

� �
þ 1
3
qw2 e�

mpw2

2kBT � e�
mpw2

kBT

� �

�p
X1
m¼1

p0
12

a2mðwÞ þ
qw2

24
b2mðwÞ


 �
: (100)

In order to determine the spatial average of the shear stress component
ryx in the Knudsen layer, given by Eq. (84), we can utilize the equality
given by Eq. (89), which enables us to obtain the expression

�ryxðyKn;wÞ ¼
1
L0

ð L0
2

�L0
2

ryxðx; yKn;wÞ dx

¼ � p
3
2

16
qvthw

X1
m¼1

amðwÞbmðwÞ: (101)

VII. RESULTS

All of the quantities in the Knudsen layer are determined for a
flow of helium (He) gas near a monocrystalline copper surface—Cu
(010). Temperature and pressure are taken to be T ¼ 298:15 K
and p0 ¼ 1:01325 bar. Mass of a single helium atom is equal to
mp ¼ 6:646 476 70� 10�27 kg,58 while the two parameters h0 and L0
corresponding to peak-to-peak amplitude and wavelength for a poten-
tial pertaining to Cu (010) are both equal to h0 ¼ 0:025� 10�10 m
and L0 ¼ 3:597� 10�10 m.59

Figures 5 and 6 display the statistical averages of fluid velocity
components vx and vy as given by Eqs. (53)and (58), calculated for
w¼ 10 m/s. They show us that the two velocity components have a
cos x like dependence on the position x, meaning that they are both
periodic functions. It is evident that vx and vy have the same
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functional dependence as potential shape function fS given by Eq. (4),
as both components of fluid velocity match the contour which defines
the shape of the potential. We can also note the fact that we can
decompose both of the statistical averages into a constant term inde-
pendent of x, which represents the spatial average of a velocity compo-
nent, and an oscillatory term, which is a function of cos x.

We can also observe that the spatial average of the normal veloc-
ity component vy is equal to zero, which means there is no net flow of
fluid in the direction of the y axis, while the spatial average of the tan-
gential velocity component vx is equal to a constant value, which is a
function of the wall velocity w.

Figure 7 displays the spatial average of the tangential fluid veloc-
ity component vx as a function of w as given by Eq. (92). We can
observe that the spatial average changes linearly at a rate approxi-
mately equal to one, that is, �vxðwÞ � w. This fact serves to demon-
strate that when either the surface or fluid moves with a relatively
small velocity w, the no-slip boundary condition represents a very
good approximation of the relation between the surface and wall
velocities. It should be noted that according to our model, tangential
velocity �vx is strictly smaller than w for all w> 0, which makes sense
because any momentum impaired by the moving surface upon the
fluid is also dissipated in directions perpendicular to the direction of
motion. This can also be deduced from the probability density func-
tion given by Eq. (42), which is more spread out on the interval of pos-
sible scattering angles h at higher values of w, meaning that there is
greater likelihood of particles scattering into directions, which deviate

from the specular angle h ¼ �h0. Furthermore, this property may also
explain why tangential velocity reaches a maximum value with
increasing w and behaves as e�kw

2
for values of w approaching infinity,

where it approaches zero. Because we assumed that we are dealing
with a sub-sonic flow where fluid density is constant everywhere in the
domain, it is difficult to treat results at large values of w as entirely
factual.

The amplitudes of the oscillating parts of vx and vy that can be
extracted from Eqs. (53) and (58) are shown in Fig. 8. By comparing
Figs. 7 and 8, we can observe that graphs of the amplitude of the oscil-
latory part of vx and its spatial average have the same general shape in
the sense of behaving as a linear functions for small values of wall
velocity w, having a global maximum at some larger value of w and
tapering off to zero for very large values of w. On the other hand, the
amplitude of the oscillatory part of vy is constant at small values of
w and behaves as e�kw

2
at larger values.

We can observe from Figs. 9 and 10 that the diagonal stress ten-
sor components and static pressure oscillate as a function of cos x,
while Figs. 11 and 12 show that the sole non-diagonal stress tensor
component ryx is proportional to cos ðkxÞ � aðwÞ cos2ðkwÞ, which is
also evident from Eq. (84). Similarity between the oscillatory behaviors
of stress tensor components and statistical averages of velocity compo-
nents is a consequence of the fact that stresses in a fluid are a conse-
quence of momentum fluxes in various directions, which depends on
the velocities of constituent particles. This is a point conveyed by the
expression (60).

FIG. 5. Mesoscopic tangential velocity component vx at w¼ 10 m/s.

FIG. 6. Mesoscopic normal velocity component vy at w¼ 10 m/s.

FIG. 7. Spatial average of the tangential velocity component.

FIG. 8. Amplitudes of velocity component oscillations.
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Figures 13 and 14 show how the spatial averages of the static
pressure p and shear stress component ryx given by Eqs. (100) and
(101) depend on wall velocity w. It is evident from the former figure
that static pressure is constant at low values of w and then decreases
proportionally to e�kw

2
as w increases. This is so because the e�kw

2

term in Eq. (100) dominates over the w2e�kw
2
terms. The latter figure

shows that the shear stress component ryx increases approximately

linearly for small values of w and then decreases proportionally to
e�kw

2
after the shear stress reaches its maximum value with increasing

w. Linear correlation between the wall velocity w and shear stress given
by ryx also speaks in favor of the model, as this is an empirical law also
observed in nature. It is well known that that the coefficient of drag cd
for a flat plate is inversely proportional to the velocity of the flow
around the plate, which is why we can say that there exist definite sim-
ilarities between the predictions of our model and empirical observa-
tions (at least at low values of the wall velocity w). It should be noted

FIG. 9. Diagonal stress tensor components rii at w¼ 10 m/s.

FIG. 10. Static pressure p at w¼ 10 m/s.

FIG. 11. Stress tensor component ryx at w¼ 10 m/s.

FIG. 12. Stress tensor component ryx at w¼ 100 m/s.

FIG. 13. Spatial average of static pressure �p.

FIG. 14. Spatial average of tangential stress �ryx .
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here that because of certain approximations we have made in our
model it is very difficult to predict values of the average shear stress in
the Knudsen layer with a very high degree of accuracy. Therefore, it is
also very difficult to compare our predictions directly with very precise
empirical measurements of the drag coefficient for similar geometries.

VIII. DISCUSSION

In this paper, we have shown how the statistical averages, that is,
mesoscopic velocity components vx and vy [Eqs. (53) and (58)] as well
as stress tensor components and static pressure rxx, ryy, rzz, ryx, and p,
respectively, in the Knudsen layer [Eqs. (69), (75), (80), (84), and (81)]
are periodic functions of the tangential coordinate x. Each of these
functions can be expressed as a sum of parts, one of which is constant
with respect to position and another that is a function of the tangential
coordinate x and is represented by a Fourier series. We have also
shown that the relationships between spatial averages of the tangential
and normal velocity components �vx and �vy [Eqs. (91) and (92)], which
are equal to average macroscopic values of these components, and wall
velocity w match empirical observations relatively well. Our model
predicts that the velocity component �vy is equal to zero for all values
of w, while the velocity component �vx is equal to w for sufficiently
small values of w, which is in accordance with the classical no-slip
boundary condition based on empirical analysis of the flow of fluid
near a surface. Furthermore, our model also predicts a linear relation-
ship between fluid shear stress ryx in the Knudsen layer and velocity
w in cases when its value is small, which is another result that matches
empirically deduced trends, although discrepancies between exact val-
ues of shear predicted by our model and experimentally measured val-
ues are considerable. Interestingly, our model also predicts that the
normal stress components in the Knudsen layer are not equal to each
other as is usually the case in the bulk of the fluid, and that the spatial
average of static pressure decreases with increasing wall velocity.

Another important fact evident from expressions for previously
mentioned quantities in the Knudsen layer is the dependence of these
quantities on the surface corrugation peak-to-peak amplitude h0.
Examining functions from Eqs. (57) and (51), which appear in expres-
sions for vx and vy , see Eqs. (53) and (58), respectively, we can see that
they decrease in value as h0 approaches zero, meaning that both veloc-
ity components would also decrease. In fact, if the surfaces were
completely flat (disregarding adsorption of fluid particles onto the sur-
face), h0 ¼ 0, both velocity components vx and vy would be equal to
zero, because there would be no tangential momentum transfer
between the wall and fluid atoms/molecules due to specular collisions.
It is necessary to point that according to the previously presented for-
malism, when h0 ¼ 0 is true, velocity vx equals

vxðh0 ! 0Þ ¼ we�
mpw2

2kBT ; (102)

which would suggest that there would still exist some sort of momen-
tum transfer between the surface and the fluid. However, we need to
make a note that if the surface was ideally flat (h0 ¼ 0), particles’
velocity component vx would not change during collisions and scatter-
ing would be completely specular. Furthermore, from the viewpoint of
fluid particles, an ideally flat moving surface with such properties is in
fact completely indistinguishable from a stationary surface, while our
whole formalism is based around the surface being in motion relative
to the bulk of fluid. Therefore, our formalism breaks down when the
corrugation amplitude h0 is exactly zero, and expression (102)

represents a false limit case. In addition, as h0 approaches zero, oscilla-
tions of static pressure p and shear stress component ryx decrease and
approach zero as well, as does the spatial average of the shear stress.

We can summarize our previous findings by stating that if the
surface of a moving wall is ideally flat, h0 ¼ 0, surface would slip
past the body of fluid without any resistance, as is it would be unable
to generate tangential stresses in the Knudsen layer (the same argu-
ment also applies to cases when fluid flows past a stationary flat sur-
face). Our model might therefore explain the reason why friction
occurs even when fluid flows past a hydraulically smooth surface,
meaning that it has a certain roughness of the order of a length scale,
which is smaller than the thickness of the viscous sub-layer. Skin
friction in the case of turbulent flows at very high Reynolds numbers
Re (Re!1) is independent of the Reynolds number, but exhibits
dependence on the relative roughness e

L0
, with the skin friction coeffi-

cient of a hydraulically smooth surface having a value greater than
zero. Considering that the surface of a monocrystalline body repre-
sents the best possible physical approximation of a hydraulically
smooth surface, it might not be an exaggeration to state that the
non-zero value of the coefficient of drag is a consequence of atomic
length scale surface corrugation.

The obtained results are also interesting from the viewpoint of
explaining boundary layer formation and hydrodynamic instability
analysis. The prerequisite for the existence of a velocity boundary
layer is the presence of tangential stresses in the solid–fluid interface,
which itself can occur only if the solid has some sort of surface
roughness present on the atomic length scale or some other larger
scales. Additionally, even though velocity and stress oscillations pre-
dicted by our model occur on a mesoscopic length scale, it is possible
that the phenomenon described in this paper also results in velocity
and stress oscillations on the macroscopic length scale. Establishing
a clear relationship between these two sets of quantities remains an
unresolved problem, although we have reasons to believe that there
exist potential avenues toward establishing such a relationship. One
possible method consists of determining spatial averages of meso-
scopic quantities on intervals which are of the order of the mean free
path and interpolating between these discrete values in order to
obtain a spatially continuous function. This function would repre-
sent a macroscopic quantity and therefore a boundary condition
which could be utilized when solving, for example, Navier–Stokes
equations, and would allow us to analyze the influence of velocity
and stress oscillations on fluid flow as well as boundary layer forma-
tion and stability.
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APPENDIX: USEFUL MATHEMATICAL FORMULAS

ðcosh0 þ coshÞ2m ¼
X2m
k¼0

2m
k

� �
coskh

X2m�k
n¼0

2m� k
n

� �
eið2ðn�mÞþkÞh

0

22m�k
;

(A1)ðp
2

�p
2

eið2ðn�mÞþkÞx dx ¼ p sinc
p
2
ð2ðn�mÞ þ kÞ

� �
; (A2)
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xn e�ax

2
dx ¼ 1

2
a�
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2 C

nþ 1
2

; ab2
� �

; n 2 Z; (A3)

ðp
2

�p
2

sin ðnxÞ coskx dx ¼ 0; <ðkÞ 
 0; n 2 Z; (A4)
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2
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ffiffiffi
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2

� �
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 0; k 2 Z; (A5)
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2
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2
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kþ 1
2

� �

C
kþ 4
2

� � ; <ðkÞ 
 0; k 2 Z; (A6)

f ðwÞgðwÞ ¼ 1
L0

ð L0
2

�L0
2

f ðx;wÞgðx;wÞdx

¼ 1
L0

ð L0
2

�L0
2

X1
m¼1

fmðwÞ cos
2pm
L0

x

� �X1
m¼1

gmðwÞ cos
2pm
L0
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dx
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2

�L0
2
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fmðwÞgmðwÞcos2
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� � 
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X1
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X1
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X1
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fmðwÞgmðwÞ: (A7)

NOMENCLATURE

c Auxiliary function in the expression for the function PG, /
ci Component of relative velocity, m/s
c1 Auxiliary constant in the expression for the function P, s/m
c2 Auxiliary constant in the expression for the

Maxwell–Boltzmann probability density function, s/m
d Particle kinetic diameter, m

F 0 Auxiliary function of coordinate x No. 0, /
F 1 Auxiliary function of coordinate x No. 1, /
F 2 Auxiliary function of coordinate x No. 2, /
F 3 Auxiliary function of coordinate x No. 3, /

F 4 Auxiliary function of coordinate x No. 4, /

f Velocity probability density function, s3/m3

finc Probability density function of a particle entering the
Knudsen layer, /

fS Potential shape function, /
f0 Maxwell–Boltzmann distribution, s3/m3

f� Velocity probability density function of incident particles, s3/
m3

fþ Velocity probability density function of scattered particles,
s3/m3

h Planck’s constant, m2 kg/s
h0 Peak-to-peak corrugation amplitude, m
k Particle wave vector, 1/m
kB Boltzmann constant, J/K
LKn Knudsen layer thickness, m
L0 Corrugation wavelength, m
lmfp Molecular mean free path, m
mp Particle mass, kg
n Number density, 1/m3

P Full conditional probability density function, s/m
PG Summation coefficient in the expansion of function Ph, /
Ph Angular probability density of scattering function, /
p Pressure, Pa

p0 Thermodynamically defined pressure, Pa
T Temperature, K
t Time, s

ui Velocity component in the local reference frame, m/s
uz Perpendicular direction velocity magnitude in the local refer-

ence frame, m/s
u0 Azimuthal plane velocity magnitude in the local reference

frame, m/s
vi Mesoscopic velocity component, m/s
vi Velocity component in the global reference frame, m/s
vth Thermal velocity, m/s
vz Perpendicular direction velocity magnitude in the global ref-

erence frame, m/s
v0 Azimuthal plane velocity magnitude in the global reference

frame, m/s
w Translating wall velocity, m/s
x Tangential position coordinate in the local reference frame, m
y Normal position coordinate in the local reference frame, m
z Perpendicular position coordinate in the local reference

frame, m
H Azimuthal angle of the velocity vector in the global reference

frame, /
h Azimuthal angle of the velocity vector in the local reference

frame, /
j Auxiliary constant in the expression for the function Ph, /

kDB De Broglie wavelength, m
q Fluid density, kg/m3

rij Stress tensor component, Pa
w General quantity, /
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