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A B S T R A C T

We present a nonlinear discrete Kirchhoff–Love four-node shell finite element that is based on the cubic
Hermite edge curves and the bilinear Coons surface patch spanning the surface between them. The cubic
Hermite edge curves are constructed by minimizing the bending curvature of a spatial curve connecting two
adjacent nodes of the element. The 𝐺1-continuity is obtained at each node of the finite element mesh. Namely,
the tangent vectors of the set of the edge curves attached to a given node of the mesh share the same
tangent plane to the shell mid-surface for any configuration. To avoid the membrane locking, common in
shell elements with higher-order interpolations, the assumed natural strains are adopted, solving the plate
compatibility equation. The derived element has 5 degrees of freedom per node, 3 mid-surface displacements
and 2 rotations of the mid-surface normal vector, which also rotate the corresponding mid-surface tangent
plane. Several numerical examples illustrate its performance in linear and nonlinear tests, for both regular and
distorted meshes.
1. Introduction

Curvature-induced high ratio between the load-bearing capacity
and weight, as well as the aesthetic features, make shell structures
invaluable in many engineering and technological applications, ranging
from cooling towers, roofs, containers, ship hulls, aircraft fuselages,
car bodies, to thin-walled smart memory alloys and nano-shells. The
shell can be geometrically represented as an intrinsic 2D curved surface
with prescribed thickness. Taking this into account, the mathematical
description of shell deformation and motion under external loadings
becomes much more complex than the corresponding description for
the 3D solid. There are various shell theories in use that are based
on different assumptions and therefore applicable for different types of
shells (e.g. thick, thin, shallow, axisymmetric, etc.) and different types
of shell behaviour (e.g. linear, geometrically non-linear, inelastic, etc.).
Commonly used shell theories that differ in terms of the basic kinematic
assumption are the theory with the Reissner–Mindlin kinematics (which
accounts for transverse shear deformation energy), the Kirchhoff–Love
theory (for thin shells), the Donnell–Mustari–Vlasov theory (for thin
and shallow shells), the solid-shell theory (useful for shells with com-
plex (inelastic) material behaviour), and the multi-layered shell theory.

As for the finite element approximations, the shell theory with
the Reissner–Mindlin kinematics requires only 𝐶0-continuity for the
unctions that approximate the initial and deformed shell geometries,

∗ Corresponding author.
E-mail address: Bostjan.Brank@fgg.uni-lj.si (B. Brank).

e.g. [1–5]. In contrast, the Kirchhoff–Love shell theory requires 𝐶1-
continuity of the corresponding functions, which is incredibly hard to
achieve, and requires, among other complexities, a large number of
element’s degrees of freedom, e.g. [6,7].

In the computer graphics and geometric modelling, the surface
patches are used for the representation of curved surfaces, e.g. [8].
In general, it is possible to achieve different levels of continuity/
smoothness between surface patches, with the 𝐶1-continuity being
much more difficult to achieve than the 𝐺1-continuity. Indeed, the
𝐶1-continuity between two adjacent surface patches requires a unique
tangent plane to the surface at any point of the common boundary,
and that the patches have identical parametric tangent vectors that
are members of the tangent plane. The 𝐺1-continuity is less strict and
does not require the same length of the tangent vectors. By definition,
the two patches with a common boundary are 𝐺1-continuous if they
have a continuously varying tangent plane along that boundary. There
are several surface patches available, e.g. [8]. The most basic is the
bi-linearly blended Coons patch, followed by the partially bi-cubically
blended Coons and bi-cubically blended Coons patches. The shapes of
these patches are controlled by the nodal points, boundary curves and
corner twist. Another type of the surface patches are the Bezier patches,
the shapes of which are defined by control points: the degree of the
Bezier patch corresponds to the number of control points. Similar to the
Bezier surface patches are the B-splines, the shapes of which are also
ttps://doi.org/10.1016/j.tws.2021.108268
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controlled by control points and can be written in a piecewise Bezier
form. Extensions of the B-splines are NURBS (non-uniform rational
basis splines) and T-splines (e.g. [9]), which also fall into the category
of NURBS.

Some of the above mentioned surface patches were used for the
derivation of plate and shell finite elements. For example, in [10], the
Coons-Gregory surface patch, which is an extension of the bi-cubic
Coons patch, was used for interpolating the transverse displacement
of a linear quadrilateral Kirchhoff plate finite element. In [11], the
deformed geometry of a linear quadrilateral plate finite element was
interpolated with the Gregory patch, which is an extension of the ra-
tional bi-cubic Bezier surface patch. The Kirchhoff plate finite elements
based on the Gregory surface patch guarantee the 𝐺1-continuity of the
ransverse displacement between the elements, but not the continuity
f its second derivatives, which causes the related plate elements to
ail the (bending) patch test if constraints are not enforced, see [11].
he ideas from [10] and [11] were applied to linear shells in [7]. As
or the shell finite elements, many recently proposed formulations are
ased on the approach of isogeometric analysis (IGA) introduced by
ughes [12], see e.g. Kiendl et al. [13]. The main idea behind the IGA

ormulations is to use the computer aided design functions to define the
inite element approximations. The isogeometric shell finite elements
se B-splines and NURBS to interpolate any shell configuration with
igh degree of continuity. The problem of 𝐺1-continuity between ad-
acent patches appears also in isogeometric shell formulations. To this
nd, Kiendl et al. [14] introduced a penalty formulation based on the
ending strip method, which was later accompanied by several other
trategies to enforce the 𝐺1-continuity between the patches.

The discrete Kirchhoff plate and the discrete Kirchhoff–Love shell
inite elements satisfy the continuity requirements only at the discrete
oundary points and not along the entire boundary of the element.
n the majority of formulations, the continuity requirements are im-
osed implicitly by enforcing the Kirchhoff kinematic constraint at
he discrete boundary points. For example, the linear discrete Kirch-
off quadrilateral plate elements from [15–17] enforce the Kirchhoff
inematic constraint at the nodes (and partly along each edge in
he direction of the edge). For a review of linear discrete Kirchhoff
late and discrete Kirchhoff–Love shell finite elements, we refer the
eader to [18]. As for the geometrically non-linear (large rotation)
iscrete Kirchhoff–Love shell finite elements, most formulations are for
riangles, and only a few for quadrilaterals, see [19–21]. In [20], the
ntegral form for zero transverse shear strains along the element edges
in the direction of the edge) is enforced, and in [21], the Kirchhoff–
ove constraints are imposed at mid-sides of the edges of the element
ith a non-standard numerical quadrature.

This work presents a novel discrete Kirchhoff–Love non-linear (large
otation) quadrilateral finite element. The formulation is based on the
ilinear Coons patch spanned between the cubic Hermite edge curves.
he tangent vectors at both ends of the Hermite edge curve lie on
he tangent planes to the mid-surface of the shell, which provides the
1-continuity in the nodes. The derived element has only 5 degrees
f freedom per node, i.e. 3 displacements and 2 rotations, which is
uch less than full Kirchhoff–Love shell formulations, e.g. [6,7]. The

otational degrees of freedom rotate the nodal mid-surface normal
ector along with the corresponding tangent plane to the mid-surface
f the shell. This, together with the displacement degrees of freedom,
ffects the shapes of the Hermite edge curves and the Coons surface
atch, but keeps the 𝐺1-continuity in the nodes for any shell con-
iguration. In this way, we manage to keep the same number of the
egrees of freedom as required for the corresponding quadrilaterals
ith the Reissner–Mindlin kinematics, which have much lower con-

inuity requirement between elements. Moreover, the same data as
or the Reissner–Mindlin elements is needed to construct the mesh
or the derived discrete Kirchhoff–Love element: nodal coordinates
nd mid-surface normals. The proposed element can also be modified
or analysis of non-smooth shells with kinks. The technique, which is
2

requently used for 5 dofs/node Reissner–Mindlin shell finite elements
with 2 local rotational dofs/node), e.g. [22], fits the proposed element
s well.

The derived finite element has higher-order interpolation functions,
hich are capable to describe curved shell geometries more accu-

ately. A disadvantage of such higher-order interpolation is strong
embrane locking. The bending deformations are accompanied by
arasitic membrane strains that artificially stiffen the element. In order
o eliminate the membrane locking, we use the assumed natural strain
ANS) method as proposed in [3].

Section 2 of the paper introduces the basics of the Kirchhoff–Love
heory, followed by the definition of the edge curves of the finite
lement in Section 3, and the definition of the finite element surface
ia the Coons patch in Section 4. Section 5 describes the applied ANS
ethod for membrane locking, a set of numerical examples is presented

n Section 6, and conclusions are drawn in Section 7. Some additional
erivations, longer expressions and interpolation functions are given in
Appendix.

. Shell theory

The Kirchhoff–Love shell theory assumes that the normal vector
o the initial middle surface of the shell remains normal also in the
eformed configuration. This assumption implies the neglect of the
ransverse shear deformation energy and allows to describe the geome-
ry of the initial and the deformed configuration of the shell in exactly
he same manner.

In order to distinguish between the initial and the deformed config-
ration, we denote the objects of the former by upper case letters and
he objects of the latter by lower case letters. For the indices, we adopt
he standard notation (with some exceptions) using small Greek letters
or indices 1,2 and small Latin letters for indices 1, 2, 3.

.1. Kinematics

Let the undeformed (initial) shell configuration 𝑆 be described in
3 as:

̄ (𝜉1, 𝜉2, 𝜉3) ∶= 𝑿(𝜉1, 𝜉2) + 𝜉3𝑨3(𝜉1, 𝜉2), (1)

here (𝜉1, 𝜉2) ∈  ⊂ R2 and 𝜉3 ∈ [−ℎ∕2, ℎ∕2] ⊂ R represent a triplet
f curvilinear coordinates. Hereinafter, for the sake of brevity, we will
mit writing the arguments of the function. Thus, 𝑿 describes the mid-
urface 𝑀 , 𝑨3 is the unit vector field that is normal to 𝑀 ,  is a

parametrization domain of 𝑀 , and ℎ is the initial thickness of the shell
constant in our case). The tangent plane on 𝑀 , denoted by 𝑀 , is

defined by the vectors

𝑨𝛼 ∶= 𝑿,𝛼 =∶
𝜕𝑿
𝜕𝜉𝛼

, 𝛼 ∈ {1, 2}, (2)

which, together with

𝑨3 ∶=
𝑨1 ×𝑨2

‖𝑨1 ×𝑨2‖
, (3)

form a local covariant basis. Because 𝑨3 is perpendicular to 𝑀 and
because of unit length, the following holds:

𝑨𝛼 ⋅𝑨3 = 0, 𝑨3,𝛼 ⋅𝑨3 = 0, 𝑨3 ⋅𝑨3 = 1 and 𝑨3 = 𝑨3. (4)

he contravariant basis vectors 𝑨𝑖 are defined by the orthogonality
ondition 𝑨𝑖 ⋅ 𝑨𝑗 = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the Kronecker delta symbol. In a

point on 𝑆, a local covariant basis is constructed as:

𝑮𝛼 = 𝑨𝛼 + 𝜉3𝑨3,𝛼 and 𝑮3 = 𝑨3. (5)

The covariant elements 𝐺𝑖𝑗 ∶= 𝑮𝑖 ⋅𝑮𝑗 of the metric tensor 𝑮 are

3 3 2
𝐺𝛼𝛽 = 𝐴𝛼𝛽 − 2𝜉 𝐵𝛼𝛽 + (𝜉 ) 𝐶𝛼𝛽 , 𝐺𝛼3 = 0, 𝐺33 = 1, (6)
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where 𝐴𝛼𝛽 , 𝐵𝛼𝛽 ad 𝐶𝛼𝛽 represent the covariant elements of the first,
second and third fundamental forms of the mid-surface 𝑀 , respectively.
They are defined as:

𝐴𝛼𝛽 ∶= 𝑨𝛼 ⋅𝑨𝛽 , 𝐵𝛼𝛽 ∶= 𝑨3 ⋅𝑨𝛼 ,𝛽 , 𝐶𝛼𝛽 ∶= 𝑨3,𝛼 ⋅𝑨3,𝛽 . (7)

The initial and the deformed mid-surface are connected by the displace-
ment field 𝑼

𝒙 = 𝑿 + 𝑼 . (8)

Because of the Kirchhoff–Love kinematic assumption, the structure of
the above kinematic expressions, given for the initial configuration,
remains the same also for the deformed configuration.

For the strain measure, we will use the Green–Lagrange strain
tensor

𝑬 ∶= 1
2
(𝒈 −𝑮), (9)

where 𝒈 denotes the metric tensor of the deformed shell configuration
𝑠. Because of the same structure of the kinematic expressions in the
initial and deformed configuration, as mentioned above, we can write
the components of the Green–Lagrange strain tensor in terms of to the
contravariant basis 𝑨𝛼 ,𝑨3 as

𝐸𝛼𝛽 = 𝜖𝛼𝛽 + 𝜉3𝜅𝛼𝛽 + (𝜉3)2𝜌𝛼𝛽 , and 𝐸𝑖3 = 0, (10)

here

𝛼𝛽 = 1
2
(

𝑎𝛼𝛽 − 𝐴𝛼𝛽
)

, 𝜅𝛼𝛽 = −(𝑏𝛼𝛽 − 𝐵𝛼𝛽 ), 𝜌𝛼𝛽 = 1
2
(

𝑐𝛼𝛽 − 𝐶𝛼𝛽
)

,

(11)

nd 𝑎𝛼𝛽 , 𝑏𝛼𝛽 and 𝑐𝛼𝛽 are the fundamental forms of the deformed mid-
urface 𝑚. Following the usual approach, such as e.g. in [23], we will
eglect the effect of 𝜌𝛼𝛽 .

To conclude this section, let us recall some useful identities from
he differential geometry, see e.g. [24], that apply for the adopted shell
heory (summation over repeated indices applies):

3,𝛼 = −𝐵𝛾
𝛼𝑨𝛾 , 𝐵𝛾

𝛼𝐴𝛾𝛽 = 𝐵𝛼𝛽 , 𝐵𝛾
𝛼𝐵𝛾𝛽 = 𝐶𝛼𝛽 , (12)

𝑨1 ×𝑨2 =
√

𝐴𝑨3, 𝑨2 ×𝑨3 =
√

𝐴𝑨1, 𝑨3 ×𝑨1 =
√

𝐴𝑨2, (13)

𝐴 = ‖𝑨1 ×𝑨2‖
2 = 𝐴11𝐴22 − (𝐴12)2, 𝑨𝛼 = 𝐴𝛼𝛾𝑨𝛾 , 𝐴𝛼𝛾𝐴𝛾𝛽 = 𝛿𝛼𝛽 , (14)

𝛤 𝛾
𝛼𝛽 = 𝑨𝛾 ⋅𝑨𝛼,𝛽 = −𝑨𝛽 ⋅𝑨𝛾

,𝛼 . (15)

2.2. Constitutive relations

We will use the thin-shell version of the isotropic St. Venant–
Kirchhoff hyperelastic strain energy function, which is appropriate
for large displacements and rotations, but only for moderately large
strains. It takes into account the plane stress assumptions, and it is
defined as a sum of two parts, 𝑊 = 0𝑊 + 1𝑊 , where 0𝑊 is the
membrane deformation energy density and 1𝑊 is the bending deforma-
tion energy density. For the chosen strain energy function, the second
Piola–Kirchhoff membrane forces and bending moments are its energy
conjugates. They are given as:

𝑁𝛼𝛽 =
𝜕0𝑊
𝜕𝜖𝛼𝛽

= 𝐸ℎ
1 − 𝜈2

𝐻𝛼𝛽𝛾𝛿𝜖𝛾𝛿 ,

𝑀𝛼𝛽 =
𝜕1𝑊
𝜕𝜅𝛼𝛽

= 𝐸ℎ3

12
(

1 − 𝜈2
)𝐻𝛼𝛽𝛾𝛿𝜅𝛾𝛿 ,

(16)

where 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio and 𝐻𝛼𝛽𝛾𝛿 are the
omponents of the isotropic constitutive tensor

𝛼𝛽𝛾𝛿 = 𝜈𝐴𝛼𝛽𝐴𝛾𝛿 + 1
2
(1 − 𝜈)

(

𝐴𝛼𝛾𝐴𝛽𝛿 + 𝐴𝛼𝛿𝐴𝛽𝛾). (17)

By using Voigt’s notation for the strains and stress resultants,

𝝐 =
[

𝜖 , 𝜖 , 2𝜖
]𝑇 , 𝜿 =

[

𝜅 , 𝜅 , 2𝜅
]𝑇 , (18)
11 22 12 11 22 12 s

3

=
[

𝑁11, 𝑁22, 𝑁12]𝑇 , 𝑴 =
[

𝑀11,𝑀22,𝑀12]𝑇 , (19)

we obtain the following relations from Eqs. (16) and (17):

𝑵 = 𝐸ℎ
1 − 𝜈2

𝑯𝝐, 𝑴 = 𝐸ℎ3

12(1 − 𝜈2)
𝑯𝜿, (20)

where the constitutive matrix 𝑯 is (see e.g. [23]):

=
⎡

⎢

⎢

⎣

𝐴11𝐴11 𝜈𝐴11𝐴22 + (1 − 𝜈)𝐴12𝐴12 𝐴11𝐴12

𝜈𝐴11𝐴22 + (1 − 𝜈)𝐴12𝐴12 𝐴22𝐴22 𝐴22𝐴12

𝐴11𝐴12 𝐴22𝐴12 1−𝜈
2
𝐴11𝐴22 + 1+𝜈

2
𝐴12𝐴12

⎤

⎥

⎥

⎦

.

(21)

2.3. Equilibrium equations

The total potential energy functional of the shell is

𝛱(𝑼 ) = ∫𝑀

(

0𝑊 (𝜖𝛼𝛽 (𝑼 )) + 1𝑊 (𝜅𝛼𝛽 (𝑼 ))
)

𝑑𝐴

− ∫𝑀
𝑼 ⋅ 𝒑 𝑑𝐴 + ∫𝑀

1
2
𝐾𝑠 (𝑈3)2 𝑑𝐴, (22)

here 0𝑊 and 1𝑊 are the membrane and the bending strain energy
unctions, respectively, 𝒑 is the surface loading, and 𝑈3 = 𝑼 ⋅ 𝑨3 is
ormal displacement. With 𝐾𝑠 we denote the stiffness of the elastic
oundation, as in [25] and [26]. Of course, the boundary loading may
lso exist, and in this case the boundary integral has to be added to
22).

The mechanical system is in equilibrium, when the potential energy
unctional is at its minimum. The necessary condition is

𝛱 = 𝑑
𝑑𝜀

[

𝛱(𝑼 + 𝜀𝛿𝑼 )
]|

|

|

|𝜀=0
= 0, (23)

here 𝛿𝛱 denotes the variation of the potential energy, and 𝜀 is a scalar
arameter. By inserting Eq. (22) into Eq. (23) we get

𝛱(𝑼 , 𝛿𝑼 ) = ∫𝑀

(

𝛿𝜖𝛼𝛽𝑁
𝛼𝛽 + 𝛿𝜅𝛼𝛽𝑀

𝛼𝛽)𝑑𝐴

− ∫𝑀
𝛿𝑼 ⋅ 𝒑 𝑑𝐴 + ∫𝑀

𝛿𝑈3𝐾𝑠𝑈3𝑑𝐴 = 0, (24)

here 𝛿𝑼 and 𝛿𝑈3 are kinematically admissible variations of displace-
ent field from (8) and normal displacement field, and 𝛿𝜖𝛼𝛽 , 𝛿𝜅𝛼𝛽 are

ariations of membrane and bending strains, respectively.

. Edge curves for quadrilateral finite element

Let us construct the boundary of a discrete-Kirchhoff–Love shell
inite element, which has four nodes and four edge curves spanning
etween the nodes. The spatial locations of the nodes and the unit
ormal vectors to the shell mid-surface at the nodes are given. This
mplies that the tangent planes to the shell mid-surface at the nodes are
nown as well. The construction of the edge curves will be presented
nly for the initial configuration, because exactly the same procedure
s also valid for the deformed configuration. Let us note that the capital
atin letter index from the index set {1, 2, 3, 4} (usually on the left hand
ide of a particular symbol) stands for the finite element node.

.1. Edge curves

Following Refs. [27] and [28], we choose the functional, which can
e associated with the bending of a spatial curve 𝑹(𝑡),

(𝑹) = ∫

𝑡1

𝑡0
𝑹 ′′(𝑡) ⋅𝑹 ′′(𝑡)𝑑𝑡. (25)

ere, 𝑡 is a curvilinear coordinate that has values 𝑡0 and 𝑡1 at the

tart and end nodes, respectively. We search for the optimal equation
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𝑹

t

Fig. 1. Edge curve with the tangent vector, tangent plane, and orthonormal basis at its start and end point.
𝑡

a

𝑿

w
a
b

f function 𝑹(𝑡) by using the calculus of variations as described in
Appendix, see Eqs. (99)–(115). The solution

(𝑡) = 𝑡3𝑪4 + 𝑡2𝑪3 + 𝑡𝑪2 + 𝑪1, (26)

where 𝑪𝐼 are constant vectors, gives the edge curve with the least bend-
ing. Two boundary conditions for defining 𝑪𝐼 are the spatial locations
of the start and end node. The remaining two boundary conditions are
the tangent vectors to the curve at the start and end node, which are
required to be on the corresponding mid-surface tangent planes.

For the edge curve spanning between nodes 𝐼 and 𝐽 of the finite
element, the boundary conditions are:

𝑹(𝑡0) = 𝑿𝐼 , 𝑹(𝑡1) = 𝑿𝐽 , 𝑹 ′(𝑡0) = 𝐼𝑻 𝑘, 𝑹 ′(𝑡1) = 𝐽𝑻 𝑘, (27)

where 𝑿𝐼 and 𝐼𝑻 𝑘 are the position vector and the tangent vector for
node 𝐼 , respectively, and 𝑘 ∈ {1, 2} reflects that there are two edge
curves at node 𝐼 , each of them having its own tangent vector. By
inserting (27) into (26), we get:

𝑹(𝑡) = 𝑿𝐼
(𝑡 − 𝑡1)2(2𝑡 − 3𝑡0 + 𝑡1)

(−𝑡0 + 𝑡1)3
+𝑿𝐽

(𝑡 − 𝑡0)2(2𝑡 + 𝑡0 − 3𝑡1)
(𝑡0 − 𝑡1)3

+

𝐼𝑻 𝑘
(𝑡 − 𝑡0)(𝑡 − 𝑡1)2

(𝑡0 − 𝑡1)2
+ 𝐽𝑻 𝑘

(𝑡 − 𝑡0)2(𝑡 − 𝑡1)
(𝑡0 − 𝑡1)2

. (28)

If Eq. (28) is to cover all four edges of the finite element, the indices
in Eq. (28) should be used in the following order (see Fig. 5)

𝐼 = {1, 2, 4, 1}, 𝐽 = {2, 3, 3, 4}, 𝑘 = {1, 2, 1, 2}. (29)

Moreover, the curvilinear coordinate 𝑡 should be associated with the
isoparametric coordinates of the finite element, 𝜉1 ∈ [−1, 1] and 𝜉2 ∈
[−1, 1], which approximate the curvilinear coordinates over the shell
mid-surface from Section 2. In Eq. (28), the following order should be
used

𝑡 = {𝜉1, 𝜉2, 𝜉1, 𝜉2} (30)

o be in accordance with Eq. (29).
4

For a particular edge curve between nodes 𝐼 = 1 and 𝐽 = 2, we have

= 𝜉1, 𝑹(𝜉1) = 𝑿(𝜉1,−1), 𝑡0 = −1, 𝑡1 = 1, 𝑘 = 1, (31)

nd the boundary conditions (27) are specified as

𝐼 = 𝑿1, 𝑿𝐽 = 𝑿2, 𝐼𝑻 𝑘 = 1𝑨1, 𝐽𝑻 𝑘 = 2𝑨1, (32)

hich reminds us that the nodal tangent vector equals the nodal covari-
nt basis vector. The following notation is used: 𝐼𝑨𝛼 is the covariant
asis vector 𝑨𝛼 , see Eq. (2), at the finite element node 𝐼 . Consequently,

the relations for the edge curve between nodes 𝐼 = 4 and 𝐽 = 3 are

𝐼𝑻 𝑘 = 4𝑨1, 𝐽𝑻 𝑘 = 3𝑨1, (33)

and for the curves between nodes 𝐼 = 2 and 𝐽 = 3, and 𝐼 = 1 and 𝐽 = 4,

𝐼𝑻 𝑘 = 2𝑨2, 𝐽𝑻 𝑘 = 3𝑨2, and 𝐼𝑻 𝑘 = 1𝑨2, 𝐽𝑻 𝑘 = 4𝑨2, (34)

respectively.

3.2. Nodal tangent vectors of the edge curves

Let us create an orthonormal vector basis at each node of the
finite element. The third vector of such a basis at node 𝐼 is given
by a unit normal vector 𝐼𝑨3. The other two vectors, 𝐼𝑬1 and 𝐼𝑬2,
are perpendicular to it and to each other, but otherwise arbitrary, see
Fig. 1. With the nodal orthonormal bases at hand, the tangent vectors
for the edge curve between nodes 𝐼 and 𝐽 can be expressed by the
following linear combinations:

𝐼𝑻 𝑘 =
𝑘

𝐼𝛼1 𝐼𝑬1+
𝑘

𝐼𝛼2 𝐼𝑬2, (35)

𝑻 =
𝑘
𝛼 𝑬 +

𝑘
𝛼 𝑬 . (36)
𝐽 𝑘 𝐽 1 𝐽 1 𝐽 2 𝐽 2



T. Veldin, B. Brank and M. Brojan Thin-Walled Structures 168 (2021) 108268

w
𝑿

𝑿

T
b

𝑿

T

𝜉

4

i

𝑿

w
c
s

𝒙

w
c
b
e

𝑼

In order to define
𝑘

𝐼𝛼1,
𝑘

𝐼𝛼2,
𝑘

𝐽𝛼1 and
𝑘

𝐽𝛼2, we insert Eqs. (35) and
(36) into (28). Moreover, we plug the resulting expression into (25)
to get the bending deformation energy of the edge curve, Eq. (25), as
a function of four unknowns:

𝐼(
𝑘

𝐼𝛼1,
𝑘

𝐼𝛼2,
𝑘

𝐽𝛼1,
𝑘

𝐽𝛼2) = − 4
(𝑡0 − 𝑡1)3

×
(

(𝑡0 − 𝑡1)2 (
𝑘

𝐼𝛼1)2 + (𝑡0 − 𝑡1)
𝑘

𝐼𝛼1
𝑘

𝐽𝛼1 𝐼𝑬1 ⋅ 𝐽𝑬1 +

(𝑡0 − 𝑡1)
(

(𝑡0 − 𝑡1)
𝑘

𝐼𝛼1
𝑘

𝐽𝛼2 𝐼𝑬1 ⋅ 𝐽𝑬2 − 3
𝑘

𝐼𝛼1 𝐼𝑬1 ⋅𝑿𝐼 +

3
𝑘

𝐼𝛼1 𝐼𝑬1 ⋅𝑿𝐽 + 𝑡0(
𝑘

𝐽𝛼1)2 − 𝑡1 (
𝑘

𝐽𝛼1)2 + 𝑡0
𝑘

𝐽𝛼1
𝑘

𝐼𝛼2 𝐽𝑬1 ⋅ 𝐼𝑬2 −

𝑡1
𝑘

𝐽𝛼1
𝑘

𝐼𝛼2 𝐽𝑬1 ⋅ 𝐼𝑬2 − 3
𝑘

𝐽𝛼1 𝐽𝑬1 ⋅𝑿𝐼

+3
𝑘

𝐽𝛼1 𝐽𝑬1 ⋅𝑿𝐽 + 𝑡0 (
𝑘

𝐼𝛼2)2 −

𝑡1 (
𝑘

𝐼𝛼2)2 + 𝑡0
𝑘

𝐼𝛼2
𝑘

𝐽𝛼2 𝐼𝑬2 ⋅ 𝐽𝑬2 − 𝑡1
𝑘

𝐼𝛼2
𝑘

𝐽𝛼2 𝐼𝑬2 ⋅ 𝐽𝑬2

−3
𝑘

𝐼𝛼2 𝐼𝑬2 ⋅𝑿𝐼 +

3
𝑘

𝐼𝛼2 𝐼𝑬2 ⋅𝑿𝐽 + 𝑡0 (
𝑘

𝐽𝛼2)2 − 𝑡1 (
𝑘

𝐽𝛼2)2 − 3
𝑘

𝐽𝛼2 𝐽𝑬2 ⋅𝑿𝐼

+3
𝑘

𝐽𝛼2 𝐽𝑬2 ⋅𝑿𝐽

)

+

3 (𝑿𝐼 ⋅𝑿𝐼 − 2 𝑿𝐼 ⋅𝑿𝐽 +𝑿𝐽 ⋅𝑿𝐽 )
)

. (37)

We search for 𝛼-s that minimize (37) and provide edge curve with the
least bending. For this purpose, the following four equations are formed

𝜕𝐼(
𝑘

𝐼𝛼1,
𝑘

𝐼𝛼2,
𝑘

𝐽𝛼1,
𝑘

𝐽𝛼2)

𝜕
𝑘

𝜒𝛼𝜔
= 0, 𝜒 ∈ {𝐼, 𝐽}, 𝜔 ∈ {1, 2}. (38)

The solution of this linear system is given in (116)–(119) in Appendix.
With known 𝛼-s, the nodal tangent vectors to the edge curves can be
written node-by-node as:

1𝑨1 =
1

1𝛼1 1𝑬1+
1

1𝛼2 1𝑬2, 1𝑨2 =
2

1𝛼1 1𝑬1+
2

1𝛼2 1𝑬2, (39)

2𝑨1 =
1

2𝛼1 2𝑬1+
1

2𝛼2 2𝑬2, 2𝑨2 =
2

2𝛼1 2𝑬1+
2

2𝛼2 2𝑬2, (40)

3𝑨1 =
1

3𝛼1 3𝑬1+
1

3𝛼2 3𝑬2, 3𝑨2 =
2

3𝛼1 3𝑬1+
2

3𝛼2 3𝑬2, (41)

4𝑨1 =
1

4𝛼1 4𝑬1+
1

4𝛼2 4𝑬2, 4𝑨2 =
2

4𝛼1 4𝑬1+
2

4𝛼2 4𝑬2, (42)

and applied as boundary conditions, see (32)–(34), to obtain the edge
curves with 𝐺1 continuity at nodes.

3.3. Continuity between the elements

For a set of elements, attached to a given node of the mesh, the
edge curves that meet at that node have their tangent vectors on
the unique tangent plane to the shell mid-surface. That makes the
approximated shell mid-surface 𝐺1-continuous across the nodes of the
mesh. However, the continuity along the edge of the element, in the
direction perpendicular to the edge is only 𝐶0, as two elements with the
same edge do not necessarily share the same tangent plane at all points
of this edge. Fig. 2 shows a schematic presentation of the continuity
between a patch of finite elements.

To conclude Section 3, we note once again that exactly the same
procedure must be repeated to construct the edge curves in the de-
formed configuration by using the orthonormal coordinate system,
denoted as {𝐼𝒆1, 𝐼𝒆2, 𝐼𝒂3} for node 𝐼 , see Fig. 3, that is completely
defined by nodal rotations as shown in Section 4.3.
5

4. Coons patch between the edge curves

In this section, we span the bilinear Coons patch between the
above defined Hermite edge curves. To this end, we use the following
notation: 𝑿(𝜉1,−1),𝑿(𝜉1, 1),𝑿(−1, 𝜉2) and 𝑿(1, 𝜉2) for the edge curves
from the initial configuration, which are defined between nodes 1 and
2, 4 and 3, 1 and 4, and 2 and 3, respectively, by Eq. (28).

4.1. Bilinear Coons patch

Three surfaces are combined in order to form the Coons patch
between the edge curves. The first surface spans between 𝑿(𝜉1,−1) and
𝑿(𝜉1, 1) as

𝑿𝑐 (𝜉1, 𝜉2) =
(

1 −
𝜉2 − 𝜉20
𝜉21 − 𝜉20

)

𝑿(𝜉1,−1) +
(
𝜉2 − 𝜉20
𝜉21 − 𝜉20

)

𝑿(𝜉1, 1), (43)

the second surface is defined between 𝑿(−1, 𝜉2) and 𝑿(1, 𝜉2) as

𝑿𝑑 (𝜉1, 𝜉2) =
(

1 −
𝜉1 − 𝜉10
𝜉11 − 𝜉10

)

𝑿(−1, 𝜉2) +
( 𝜉1 − 𝜉10
𝜉11 − 𝜉10

)

𝑿(1, 𝜉2), (44)

hereas the third surface is interpolated only between the nodes, 𝑿1 =
(−1,−1), 𝑿2 = 𝑿(1,−1), 𝑿3 = 𝑿(1, 1) and 𝑿4 = 𝑿(−1, 1), as

𝑐𝑑 (𝜉1, 𝜉2) =
[

(

1 −
𝜉1−𝜉10
𝜉11−𝜉

1
0

) ( 𝜉1−𝜉10
𝜉11−𝜉

1
0

)

] [

𝑿(−1,−1) 𝑿(−1, 1)
𝑿(1,−1) 𝑿(1, 1)

]

×

⎡

⎢

⎢

⎢

⎣

(

1 −
𝜉2−𝜉20
𝜉21−𝜉

2
0

)

( 𝜉2−𝜉20
𝜉21−𝜉

2
0

)

.

⎤

⎥

⎥

⎥

⎦

(45)

he following combination, see Fig. 4, defines the bilinear Coons patch
etween the four Hermite edge curves:

(𝜉1, 𝜉2) = 𝑿𝑐 (𝜉1, 𝜉2) +𝑿𝑑 (𝜉1, 𝜉2) −𝑿𝑐𝑑 (𝜉1, 𝜉2). (46)

he constants in Eqs. (43)–(45) are
1
0 = −1, 𝜉11 = 1, 𝜉20 = −1, 𝜉21 = 1. (47)

.2. Finite element interpolations

Eq. (46) can be rewritten in a more standard way, by presenting the
nitial surface of the finite element in terms of nodal values

(𝜉1, 𝜉2) =
4
∑

𝐼=1
(𝐼𝑁1 𝑿𝐼 + 𝐼𝑁2 𝐼𝑨1 + 𝐼𝑁3 𝐼𝑨2), (48)

here 𝑿𝐼 is the location of the node, and 𝐼𝑨1 and 𝐼𝑨2 are nodal
ovariant tangent basis vectors, defined in Section 3.2. The deformed
urface of the finite element is interpolated in the same way as

(𝜉1, 𝜉2) =
4
∑

𝐼=1
(𝐼𝑁1 𝒙𝐼 + 𝐼𝑁2 𝐼𝒂1 + 𝐼𝑁3 𝐼𝒂2), (49)

here 𝒙𝐼 is the location of the node, and 𝐼𝒂1 and 𝐼𝒂2 are nodal
ovariant basis vectors, all in deformed configuration. The difference
etween Eqs. (49) and (48) yields displacements of the surface of the
lement as:

(𝜉1, 𝜉2) =
4
∑

𝐼=1

(

𝐼𝑁1 𝐼𝒖 + 𝐼𝑁2 (𝐼𝒂1 − 𝐼𝑨1) + 𝐼𝑁3 (𝐼𝒂2 − 𝐼𝑨2)
)

, (50)

where 𝐼𝒖 is nodal displacement.
Here, 𝐼𝑁1, 𝐼𝑁2 and 𝐼𝑁3 are interpolation functions of the third

order, see Appendix, Eqs. (121)–(123), that yield from using the
Hermite edge curves and the bilinear Coons patch. These interpolation
functions characterize the derived finite element, because (48) and (49)
are applied to compute the (real and virtual) curvatures and membrane
strains, and consequently moments and membrane forces, in a way

presented in Section 2.
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Fig. 2. Illustration of continuity between the set of elements attached to a given node.
Fig. 3. Initial (left) and deformed (right) configuration of the finite element, with nodal orthonormal bases and nodal covariant base vectors.
Fig. 4. Schematic representation of 𝑿𝑐 , 𝑿𝑑 and 𝑿𝑐𝑑 surfaces assembled into the bilinear Coons patch 𝑿.
t

𝐼

.3. Nodal values in current configuration

Eq. (49) shows that the deformed surface of the finite element is
ompletely defined by the position of the nodes and by the nodal
ovariant basis vectors. The position of the node is given simply as

𝒙 = 𝐼𝑿 + 𝐼𝒖. (51)

Computing the nodal covariant basis vectors at the deformed con-
iguration is more demanding. One must first determine the nodal
rthonormal basis vectors 𝐼𝒆𝛼 , 𝐼𝒂3 by rotating the corresponding or-
honormal basis 𝑬 , 𝑨 from the initial configuration, e.g. [29]. In
𝐼 𝛼 𝐼 3

6

his respect, we can represent the initial nodal normal vector as

𝑨3 = 𝐼𝜦0𝑬3, (52)

where 𝑬3 = [0, 0, 1]𝑇 is the third basis vector of the fixed orthonormal
basis in the 3D space, into which the discretized shell mid-surface is
embedded, see Figs. 1 and 3. Here, 𝐼𝜦0 is the initial nodal rotation
matrix, given simply as

𝜦 = [ 𝑬 , 𝑬 , 𝑨 ]. (53)
𝐼 0 𝐼 1 𝐼 2 𝐼 3
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With 𝐼𝜦0 at hand, the nodal normal vector in the deformed configura-
tion can be obtained by a composition of two rotations as

𝐼𝒂3 = 𝐼𝜦0 𝐼 �̃�(𝐼𝝑)𝑬3, (54)

here 𝐼𝝑 collects the material parameters that parametrize the second
otation. In this work, we apply the (pseudo) rotation vector for 𝐼𝝑,
aking use of the Rodrigues formula to represent the second rotation,

.g. [2,29–31]

�̃�(𝐼𝝑) = cos(𝐼𝜗)𝑰 +
sin(𝐼𝜗)

𝐼𝜗
𝐼 �̂� +

1 − cos(𝐼𝜗)
(𝐼𝜗)2

𝐼𝝑⊗ 𝐼𝝑. (55)

ere, 𝐼 �̂� is a skew-symmetric matrix, thus 𝐼 �̂�𝒃 = 𝐼𝝑 × 𝒃 for any
∈ R3 and 𝐼𝜗 = ‖𝐼𝝑‖. With the above definition for 𝐼 �̃�(𝐼𝝑), the

rilling rotation is excluded, making 𝐼𝝑 a vector with only two non
ero components. Taking this into account, a simplification of Eq. (54)
s obtained:

𝒂3 = 𝐼𝜦0 𝐼 �̃�(𝐼𝝑)𝑬3 = 𝐼𝜦0

[

cos(𝐼𝜗)𝑬3 +
sin(𝐼𝜗)

𝐼𝜗
𝐼𝝑 × 𝑬3

]

. (56)

n the same way, the remaining two vectors of the nodal orthonormal
asis in the deformed configuration are obtained as

𝒆1 = 𝐼𝜦0 𝐼 �̃�(𝐼𝝑)𝑬1 = 𝐼𝜦0

[

cos(𝐼𝜗)𝑬1 +
sin(𝐼𝜗)

𝐼𝜗
𝐼𝝑 × 𝑬1

+
1 − cos(𝐼𝜗)

(𝐼𝜗)2
𝐼𝝑

(

𝐼𝝑 ⋅ 𝑬1
)

]

, (57)

𝐼𝒆2 = 𝐼𝜦0 𝐼 �̃�(𝐼𝝑)𝑬2 = 𝐼𝜦0

[

cos(𝐼𝜗)𝑬2 +
sin(𝐼𝜗)

𝐼𝜗
𝐼𝝑 × 𝑬2

+
1 − cos(𝐼𝜗)

(𝐼𝜗)2
𝐼𝝑

(

𝐼𝝑 ⋅ 𝑬2
)

]

, (58)

where 𝑬1 = [1, 0, 0]𝑇 and 𝑬2 = [0, 1, 0]𝑇 .
With the nodal orthonormal basis 𝐼𝒆𝛼 , 𝐼𝒂3 at hand, the correspond-

ing version of Eqs. (39)–(42) is employed

1𝒂1 =
1

1𝛼1 1𝒆1+
1

1𝛼2 1𝒆2, 1𝒂2 =
2

1𝛼1 1𝒆1+
2

1𝛼2 1𝒆2, (59)

2𝒂1 =
1

2𝛼1 2𝒆1+
1

2𝛼2 2𝒆2, 2𝒂2 =
2

2𝛼1 2𝒆1+
2

2𝛼2 2𝒆2, (60)

3𝒂1 =
1

3𝛼1 3𝒆1+
1

3𝛼2 3𝒆2, 3𝒂2 =
2

3𝛼1 3𝒆1+
2

3𝛼2 3𝒆2, (61)

4𝒂1 =
1

4𝛼1 4𝒆1+
1

4𝛼2 4𝒆2, 4𝒂2 =
2

4𝛼1 4𝒆1+
2

4𝛼2 4𝒆2, (62)

to get the nodal covariant basis vectors in the deformed configu-
ration. To get 16 scalar parameters from Eqs. (59)–(62), the corre-
sponding versions of Eqs. (116)–(119) in Appendix are applied with
𝒙𝐼 ,𝒙𝐽 , 𝐼𝒆1, 𝐼𝒆2, 𝐽 𝒆1 and 𝐽 𝒆2 replacing 𝑿𝐼 ,𝑿𝐽 , 𝐼𝑬1, 𝐼𝑬2, 𝐽𝑬1 and 𝐽𝑬2.

We note that by applying the finite rotation description (56)–(58)
in (23), an additive update of the (pseudo) rotation vector at the node
of the element is performed. The theoretical background for this kind
of rotational update is explained in e.g. [30,31], and the practical
implementation with illustrative numerical examples is presented in
e.g. [2,29].

5. Assumed natural strains and variational formulation

5.1. ANS concept for membrane strains

The following ANS interpolation was suggested in [32] for curing
the membrane locking for the four-node shell element

𝜖11 =
1
2
(1 − 𝜉2)𝜖11(𝐴) +

1
2
(1 + 𝜉2)𝜖11(𝐶), (63)

𝜖 = 1 (1 − 𝜉1)𝜖 (𝐷) + 1 (1 + 𝜉1)𝜖 (𝐵),
22 2 22 2 22

7

Fig. 5. Tieing points for ANS membrane strain interpolation scheme. Gauss points for
5-point quadrature rule with 𝑊1 = 𝑊2 = 𝑊3 = 𝑊4 = 5∕9 and 𝑊5 = 16∕9 weights.

𝜖12 = 𝜖12(𝐸),

where, 𝜖11(𝐴), 𝜖11(𝐶), 𝜖22(𝐷), 𝜖22(𝐵) and 𝜖12(𝐸) are the strains evaluated
at the points shown in Fig. 5. However, with the ANS from Eq. (63), the
shell element does not pass the membrane patch test. This deficiency
can be removed, see [3], by using a higher-order assumed strain
interpolation

𝜖11 = 𝜖0011 + 𝜉2𝜖0111 + (𝜉2)2𝜖0211 , (64)
𝜖22 = 𝜖0022 + 𝜉1𝜖1022 + (𝜉1)2𝜖2022 ,

𝜖12 = 𝜖0012 + 𝜉1𝜖1012 + 𝜉2𝜖0112 + 𝜉1𝜉2𝜖1112 ,

and calibrating the coefficients so that Eqs. (64) satisfy the compatibil-
ity equation for the plane membrane problem

𝜕2 𝜖11
𝜕𝜉2𝜕𝜉2

− 2
𝜕2 𝜖12
𝜕𝜉1𝜕𝜉2

+
𝜕2 𝜖22
𝜕𝜉1𝜕𝜉1

= 2𝛤 1
12
𝜕 𝜖11
𝜕𝜉2

+ 2𝛤 2
12
𝜕 𝜖22
𝜕𝜉1

− 2𝛤 𝛼
12𝛤

𝛽
12𝜖𝛼𝛽 . (65)

Here, 𝛤 1
12 and 𝛤 2

12 are Christoffel’s symbols, defined in Eq. (15).
Our implementation of ANS follows [3], except for the choice of

the plane to deal with the plane membrane problem. We use the plane
defined by the following two vectors

𝒕1 =
𝒅1 + 𝒅2

‖𝒅1 + 𝒅2‖
, 𝒕2 =

𝒅1 − 𝒅2
‖𝒅1 − 𝒅2‖

, (66)

where

𝒅1 =
𝑿3 −𝑿1

‖𝑿3 −𝑿1‖
, 𝒅2 =

𝑿2 −𝑿4
‖𝑿2 −𝑿4‖

. (67)

he properties of the projection of the shell mid-surface on that plane
re illustrated in [5]. The determinant of the transformation (i.e. the
acobian) matrix between the coordinates in the plane defined by 𝒕𝛼
nd the curvilinear coordinates 𝜉𝛼 can be given simply as

= 𝑐0 + 𝑐𝛼𝜉
𝛼 , (68)

here 𝑐0 and 𝑐𝛼 are constants. Because the covariant base vectors in
he plane are

1 = 𝑨0
1 + 𝜉2�̄�, 𝑨2 = 𝑨0

2 + 𝜉1�̄�, (69)

0
1 =

4
∑

𝑎1𝐼 𝐼𝑿, 𝑨0
2 =

4
∑

𝑎2𝐼 𝐼𝑿, �̄� =
4
∑

ℎ𝐼 𝐼𝑿, (70)

𝐼=1 𝐼=1 𝐼=1
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where 𝑎1𝐼 = 1
4 𝜉𝐼 , 𝑎2𝐼 = 1

4 𝜂𝐼 , ℎ𝐼 = 1
4 𝜉𝐼𝜂𝐼 , 𝜉𝐼 ∈ {−1, 1, 1,−1} and

𝜂𝐼 ∈ {−1,−1, 1, 1}, one has

𝑐0 = (𝑨0
1 ⋅ 𝒕1)(𝑨

0
2 ⋅ 𝒕2) − (𝑨0

2 ⋅ 𝒕1)(𝑨
0
1 ⋅ 𝒕2),

𝑐1 = (𝑨0
1 ⋅ 𝒕1)(�̄� ⋅ 𝒕2) − (�̄� ⋅ 𝒕1)(𝑨0

1 ⋅ 𝒕2),

𝑐2 = (�̄� ⋅ 𝒕1)(𝑨0
2 ⋅ 𝒕2) − (𝑨0

2 ⋅ 𝒕1)(�̄� ⋅ 𝒕2),

(71)

and

𝛤 1
12 =

1
𝛬
𝑐2, 𝛤 2

12 =
1
𝛬
𝑐1. (72)

After substituting ANS interpolations (64) into the compatibility
equation (65), the following relations are obtained

𝜖0111 = 𝜖2022 = 𝜖1112 = 𝜖∗, 2𝜖1012 = 𝜖0111 , 2𝜖0112 = 𝜖1022 , (73)

𝜖∗ =
𝑐2
𝑐0

(

𝜖0111 −
𝑐2
𝑐0

𝜖0011
)

+
𝑐1
𝑐0

(

𝜖1022 −
𝑐1
𝑐0

𝜖0022
)

−
2𝑐1𝑐2
𝑐20

𝜖0012 . (74)

indicating that there are only five independent coefficients in Eq. (64).
If we now use 4 tieing points A, B, C and D, see Fig. 5, for the in-plane
normal strains and one tieing point E for the in-plain shear strain, and
insert Eqs. (73)–(74) into Eq. (64), we get the following expressions for
the ANS strains:

𝜖11 =
1
2
(

1 − 𝜉2
)

𝜖11(𝐴) +
1
2
(

1 + 𝜉2
)

𝜖11(𝐶) −
(

1 − (𝜉2)2
)

𝜖∗, (75)

𝜖22 =
1
2
(

1 − 𝜉1
)

𝜖22(𝐷) + 1
2
(

1 + 𝜉1
)

𝜖11(𝐵) −
(

1 − (𝜉1)2
)

𝜖∗,

𝜖12 = 𝜖12(𝐸) + 1
4
𝜉1
(

𝜖11(𝐶) − 𝜖11(𝐴)
)

+ 1
4
𝜉2
(

𝜖22(𝐵) − 𝜖22(𝐷)
)

+ 𝜉1𝜉2𝜖∗,

where

𝜖∗ = −
𝑐2(𝑐0 + 𝑐2)

2𝑑
𝜖11(𝐴) +

𝑐2(𝑐0 − 𝑐2)
2𝑑

𝜖11(𝐶) −

𝑐1(𝑐0 + 𝑐1)
2𝑑

𝜖22(𝐷) +
𝑐1(𝑐0 + 𝑐1)

2𝑑
𝜖22(𝐵) −

2𝑐1𝑐2(𝑐0 + 𝑐2)
𝑑

𝜖12(𝐸) (76)

and

𝑑 = 𝑐20 − 𝑐21 − 𝑐22 . (77)

5.2. Potential energy, its variation and linearization

The total potential energy of the derived shell finite element with
the Saint-Venant Kirchhoff constitutive relation, elastic foundation and
surface loading 𝒑 can be written as, see (22):

𝛱𝑒(𝑼 ) = ∫𝑀𝑒

𝐸ℎ
2(1 − 𝜈2)

(

𝝐𝐴𝑁𝑆 ⋅𝑯𝝐𝐴𝑁𝑆 + ℎ2

12
𝜿 ⋅𝑯𝜿

)

𝑑𝐴𝑒 −

∫𝑀𝑒
𝑼 ⋅ 𝒑 𝑑𝐴𝑒 + ∫𝑀𝑒

1
2
𝐾𝑠 (𝑈3)2 𝑑𝐴𝑒. (78)

Here, 𝝐𝐴𝑁𝑆 and 𝜿 are vector fields, see Eq. (18), obtained from ex-
pressions in Section 2 by using the initial configuration data and 𝑼
from (50), which is composed of the mid-surface displacement 𝒖 =
∑4

𝐼=1 𝐼𝑁1 𝐼𝒖 and the rotation-related vector fields that are completely
defined by the interpolation functions (121)–(123) and nodal dofs.
The 𝐴𝑁𝑆 subscript in (78) reminds that the membrane strains are
computed in accordance with the developments from Section 5.1.
Furthermore, 𝑯 is from Eq. (21), and 𝑀𝑒 denotes the mid-surface of the
shell finite element in the undeformed configuration. Numerical tests
demonstrated that replacement of 𝑼 in the last two integrals in (78)
with simpler �̃� =

∑4
𝐼=1 �̃�𝐼 (𝜉1, 𝜉2)𝐼𝒖, where �̃�𝐼 are the bilinear Lagrange

interpolation functions, yields a negligible difference in results. The
variation of the potential energy of the element is

𝛿𝛱𝑒 = 𝑑
𝑑𝜀

[

𝛱𝑒(𝑼 + 𝜀𝛿𝑼 )
]|

|

|

|𝜀=0
= 0, (79)

where 𝜀 is a scalar parameter. By applying the formalism (79) in
Eq. (78) one gets

𝛿𝛱𝑒(𝑼 , 𝛿𝑼 ) = 𝐸ℎ (

𝛿𝝐𝐴𝑁𝑆 ⋅𝑯𝝐𝐴𝑁𝑆 + ℎ2 𝛿𝜿 ⋅𝑯𝜿
)

𝑑𝐴𝑒

∫𝑀𝑒 1 − 𝜈2 12

8

−∫𝑀𝑒
𝛿𝑼 ⋅ 𝒑 𝑑𝐴𝑒 + ∫𝑀𝑒

𝛿𝑈3 𝐾𝑠 𝑈3 𝑑𝐴
𝑒 = 0. (80)

he area integrals of the derived element are computed by using the
integration point scheme, see e.g. [33], shown in Fig. 5, which for

he considered element yields practically the same results as the 3 × 3
auss numerical integration rule.

The discretized form of the potential energy (22) and its variation
23) can be written as

= A𝑁𝑒𝑙
𝑒 𝛱𝑒, 𝛿𝛱 = A𝑁𝑒𝑙

𝑒 𝛿𝛱𝑒 = 0, (81)

here A is the finite element assembly operator and 𝑁𝑒𝑙 is number of el-
ments in the mesh. To solve the resulting system of equilibrium equa-
ions by the incremental-iterative Newton–Raphson method, equation
80) must be consistently linearized. We performed the linearization by
sing Mathematica [34] and its add-on AceGen [35].

. Numerical examples

The above shell formulation, denoted hereinafter as DKQ-5, was
ransformed into a computer code using Mathematica’s add on Ace-
en [35], which enables an automatic differentiation of large ex-
ressions and algorithms. The computer code for the DKQ-5 was in-
orporated into the finite element computer program AceFEM [36],
hich was used to compute the examples presented below. Structured
nd distorted meshes were used, with mesh distortion described as
= 𝐿𝑚𝑎𝑥∕𝐿𝑚𝑖𝑛, where 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 are the chosen edge lengths of

he largest and smallest finite element in the mesh. For comparison,
e also present the results of MITC4 finite element (hereinafter re-

erred to as RM-5), which is the isoparametric, 4-node element, with
eissner–Mindlin kinematics and Bathe–Dvorkin ANS interpolation for

he transverse shear strains [37]. Unless stated otherwise, the load
ontrol was applied.

.1. Eigenvalues and eigenmodes

Following [4], we computed eigenvalues of linear stiffness matrix of
single finite element. We choose two geometric configurations, shown

n Fig. 6(a) and (b), and the data:

= 2 mm, ℎ = 0.02 mm, 𝐸 = 108 MPa, 𝜈 = 0.3. (82)

The first six eigenvalues were zero, indicating that DKQ-5 correctly
describes rigid body motions. Fig. 6(a) shows that the DKQ-5 and RM-5
eigenvalues are similar up to the 11th mode and also from the 16th to
20th mode. For lower modes of the distorted element, see Fig. 6(b), the
similarity is up to the 10th mode. The eigenmodes for the square DKQ-5
element presented in Fig. 7 indicate that the modes 7–15 are bending
modes and the modes 16–20 are membrane modes. For comparison,
eigenmode 13 is also represented in bilinear representation (see 13*
in Fig. 7). Due to the use of higher order interpolation, the bending
eigenmodes of DKQ-5 are much more complex than those of RM-
5. DKQ-5 has more bending modes than RM-5, because the latter
element also has some transverse shear modes between its bending and
membrane modes. This is the reason why the RM-5 curve in Fig. 6(a)
and (b) has a jump before the DKQ-5 curve.

In Fig. 6(c) and (d), we show eigenvalues of the linear stiffness
matrix obtained for mesh of 10 × 10 flat square elements. The dis-
placements are restricted at two opposite edges of the mesh with the
following properties:

𝑤 = 20 mm, ℎ = {0.02 for case c), 0.002 for case d)} mm,

𝐸 = 103 MPa, 𝜈 = 0.3.
(83)
The shapes of the curves are similar to those for single elements.
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Fig. 6. Linear stiffness matrix eigenvalues for: (a) flat square element, (b) distorted element, (c) and (d) mesh of 10 × 10 elements, simply supported at two opposite edges.
a

1

6.2. Patch tests

The mesh in Fig. 8 is used for the membrane patch test, with the
positions of the interior nodes given as 𝑁5 = {0.039, 0.021, 0}, 𝑁6 =
{0.18, 0.03, 0}, 𝑁7 = {0.159, 0.081, 0} and 𝑁8 = {0.081, 0.081, 0} mm. The
ollowing boundary displacements are set to zero: at node 2 in the 𝑥
nd 𝑧-directions, at node 3 in all three directions, and at node 4 in the
and 𝑧-directions. At nodes 1 and 4, forces are applied. The rest of the
ata are:

= 0.24 mm, 𝑤 = 0.12 mm, ℎ = 0.001 mm, (84)
𝐸 = 1 ⋅ 106 MPa, 𝜈 = 0.25, 𝐹𝑥 = −1.2 N.
9

The analytical solution for the strains

𝜖11 = 2 ⋅ 10−2, 𝜖22 = −5 ⋅ 10−3, 𝜖12 = 0, (85)

nd displacements at nodes 1,2 and 4

𝒖 = {−4.8 ⋅ 10−3, 6 ⋅ 10−4, 0} mm, 2𝒖 = {0, 6 ⋅ 10−4, 0} mm, (86)

4𝒖 = {−4.8 ⋅ 10−3, 0, 0} mm

are matched exactly by DKQ-5 (at the integration points and nodes,
respectively).

The same mesh and material properties are assumed for another
membrane patch test, see Fig. 9, where displacement control is used.
The displacements and rotations are set to zero at node 1. At nodes 2,
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Fig. 7. Eigenmodes of DKQ-5 finite element, case (a) in Fig. 6. Eigenmode 13.* is bilinear representation of eigenmode 13.
Fig. 8. Membrane patch test with imposed forces: (a) undeformed and (b) deformed configuration (scaling factor is 10).
Fig. 9. Membrane patch test with imposed displacements: (a) undeformed and (b) deformed configuration (scaling factor is 250).
6

h
t
c
F
e
e
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3 and 4, the displacements are imposed as:

2𝒖 = {𝐿, 𝐿
2
, 0} ⋅ 10−3 mm, 3𝒖 = {(𝐿 + 𝑤

2
), (𝐿

2
+𝑤), 0} ⋅ 10−3 mm,

(87)

4𝒖 = {𝑤
2
, 𝑤, 0} ⋅ 10−3 mm

he analytical solution for the strains [38]

11 = 𝜖22 =
1
2
𝜖12 = 10−3 (88)

s matched exactly by DKQ-5 at the Gauss points. The same geometry
an also be used in the bending patch test. Unfortunately, DKQ-5 does
ot pass the bending patch test.
 𝑅

10
.3. Hemispherical shell: linear analysis

Convergence analysis for a double-curved hemispherical shell with a
ole was performed. Due to the symmetry, see Fig. 10, only one quar-
er of the hemispherical shell was meshed and appropriate boundary
onditions were taken into account. For the mesh edge ‘‘support I’’ in
ig. 10(a), the displacement in the 𝑦-direction and rotation around the
dge are zero (displacement in the 𝑧-direction at the top node of that
dge is also zero), and for the ‘‘support II’’ edge, the displacement in the
-direction and rotation around the edge are restrained. The following
ata were used:

= 10 mm, 𝜑 = 72◦, ℎ = 0.04 mm, 𝑟 = 16, (89)
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Fig. 10. Hemispherical shell: (a) undeformed and (b) deformed configuration meshed with 10 × 10 elements (scaling factor is 10).
Fig. 11. Hemispherical shell: convergence plots for (a) displacement of node A in 𝑥 direction, (b) displacement of node A in 𝑧 direction, and (c) displacement of node B in 𝑦
irection.
e
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𝐿

𝐸

= 6.825 ⋅ 107 MPa, 𝜈 = 0.3, 𝐹𝑥 = 4 N.

ote that only one force is applied to one quarter of the shell, which
s in contrast to the standard benchmark test, see e.g. [38] and [39],
here one inward and one outward forces are applied.

The convergence of the displacements at nodes 𝐴 and 𝐵 (see Fig. 10)
is shown in Fig. 11. In all cases the mesh consisted of 𝑛 × 𝑛 elements.
We can see that RM-5 converges slightly better than DKQ-5 for the
structured mesh, but it is much worse for the distorted mesh. In fact,
the DKQ-5 convergence properties for the distorted mesh change only
slightly in comparison with the structured mesh. The converged values
for the displacements from Fig. 11 are 0.206, 0.088 and −0.166 mm,
espectively.

.4. Pinched cylinder: linear analysis

We consider a pinched cylinder, studied before in e.g. [1] and [40].
n Fig. 12, a mesh for one eight of the cylinder is shown that can be
pplied (with appropriate boundary conditions) because of the sym-
etry. The following boundary displacements and rotations are set to

ero: at the mesh edge ‘‘support I’’, the displacement in the 𝑦-direction
nd rotation around the edge; at ‘‘support II’’, the displacement in the
-direction and rotation around the edge; at ‘‘support III’’, the displace-
ents in the 𝑥 and 𝑧-directions; and at ‘‘support IV’’, the displacement

n the 𝑧-direction and rotation around the edge. The geometric and
 d

11
material properties are:

𝑅 = 300 mm, 𝑤 = 300 mm, ℎ = 3 mm, 𝑟 = 16, (90)
𝐸 = 3 ⋅ 106 MPa, 𝜈 = 0.3, 𝐹𝑧 = −2.5 ⋅ 104 N.

Convergence plots for the displacements at nodes 𝐴 and 𝐵, see
Fig. 12(a), are shown in Fig. 13. The mesh consisted of 𝑛×𝑛 elements in
all cases. For a structured mesh, convergence with DKQ-5 and RM-5 is
reached with 10 × 10 and 18 × 18 meshes, respectively. For distorted
mesh, this happens for 18 × 18 and 26 × 26 meshes. The converged
displacements for Fig. 13(a) and (b) are −4.929 ⋅ 10−3 and −1.825 mm.

6.5. Twisted beam: linear analysis

The twisted beam example has been studied in e.g. [41] and [40].
The beam in Fig. 14 is clamped at one end and subjected to a force at
the other end. Its cross-section is horizontal at the clamped edge and
twisted by 𝜋

2 around 𝑥 where the force acts. The meshes consist of 𝑛×𝑚
lements, with 𝑚 = 6 × 𝑛. The rest of the geometric and material data
re:

= 12 mm, 𝑤 = 1.1 mm, ℎ = 0.0032 mm, 𝑟 = 2,
(91)

= 29 ⋅ 106 MPa, 𝜈 = 0.22, 𝐹𝑦 = 1 ⋅ 10−6 N.

Fig. 15 shows the convergence of displacements in the 𝑦 and 𝑧-
irection at node 𝐴. For displacements at Fig. 15(a) and (b), the
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Fig. 12. Pinched cylinder: (a) undeformed and (b) deformed configurations meshed with 10 × 10 elements (scaling factors is 30).
Fig. 13. Pinched cylinder: convergence plots for (a) displacement at node A in 𝑥 direction, and (b) displacement at node B in 𝑧 direction.
Fig. 14. Twisted beam: (a) undeformed and (b) deformed configuration meshed with 4 × 24 elements (scaling factor is 500).
Fig. 15. Twisted beam convergence plot for: (a) displacement of node A in 𝑦, (b) displacement of node A in 𝑧.
converged values are 1.29 ⋅ 10−3 and −1.87 ⋅ 10−3 mm. For structured
mesh, both elements reach convergence with 4 × 24 elements. For
distorted mesh, RM-5 performs very poorly, and it converges only for
fine mesh of 40 × 240 elements. On the other hand, DKQ-5 reaches
12
convergence already with mesh 6 × 36. Note that if the mesh distortion
is increased to 𝑟 = 16, DKQ-5 needs twice denser mesh of 12 × 72 ele-
ments to converge, while RM-5 needs extremely fine mesh of 120 × 720
elements.
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Fig. 16. L-shaped plate: (a) undeformed and (b) deformed configuration meshed with 6 × 6 × 2 elements (scaling factor is 0.01).
Fig. 17. L-shaped plate convergence plot for: (a) displacement of node A in 𝑧-direction, (b) deformation energy.
Fig. 18. Hemispherical shell, nonlinear analysis: (a) undeformed and (b) deformed configuration meshed with 14 × 14 elements.
6.6. L-shaped plate: linear analysis

The L-shaped plate has been studied in e.g. [7]. The plate in Fig. 16
is simply supported at all exterior edges and free at the two interior
edges. It is subjected to the uniform pressure. The mesh consists of
𝑛×𝑛×2 distorted finite elements. The geometric and material properties
are:

𝐿 = 1 m, ℎ = 1 ⋅ 10−4 m, 𝑝 = 7.848 Pa, (92)
𝐸 = 200 ⋅ 109 Pa, 𝜈 = 0.3.

Fig. 17(a) shows the convergence of displacement in the 𝑧-direction
at node 𝐴 and Fig. 17(b) convergence of the deformation energy of
the system. The results of DKQ-5 are compared with discrete Kirchhoff
plate element (DKQ) described in [42], RM-5, and shell finite element
from [7]. All elements converge to displacement 36.817 mm and defor-
mation energy 162.992 J, computed with a mesh of 500 × 500 × 2 DKQ
elements. The DKQ-5 convergence is the slowest. We may conclude
that the reason for poor convergence of DKQ-5 in this example is the
singularity in the re-entrant corner. The singularity point influences
DKQ-5 more than other formulations.
13
6.7. Hemispherical shell

A nonlinear analysis of hemispherical shell, a popular benchmark
test [43] and [39], was performed. In Fig. 18(a), the geometry of one
quarter of the hemisphere is shown with the displacement/rotation
boundary conditions, which are the same as in Example 6.3. We note,
however, that two forces are acting on one quarter of the shell in the
nonlinear example. Geometrical and material data are also the same,
only force 𝐹𝑦 is added:

𝑅 = 10 mm, 𝜑 = 72◦, ℎ = 0.04 mm, 𝑟 = 16, (93)
𝐸 = 6.825 ⋅ 107 MPa, 𝜈 = 0.3, 𝐹𝑥 = −𝐹𝑦.

In Fig. 18(b), the deformed configuration is shown. The DKQ-5 and
RM-5 results are compared with reference results from [43] in Fig. 19:
displacements at nodes 𝐴 and 𝐵 are shown for mesh 14 × 14. Fig. 19(a)
shows the results for the structured mesh, and Fig. 19(b) shows the
results for the distorted mesh. We can see that DKQ-5 matches well
the reference values, while RM-5 does not. For the distorted mesh,
the difference between DKQ-5 (which is in good agreement with the
reference values) and RM-5 is even more pronounced.
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Fig. 19. Hemisphere shell, nonlinear analysis: displacement comparison for (a) structured mesh and (b) distorted mesh.
.8. Cylindrical panel

One-edge-clamped cylindrical panel is loaded with line moment as
hown in Fig. 20(a). The geometrical and material parameters are taken
rom [4]:

= 20 mm, 𝑤 = 10 mm, 𝜑 = 30◦, ℎ = 0.002 mm,
(94)

𝑟 = 12, 𝐸 = 2.1 ⋅ 106 MPa, 𝜈 = 0.0.

ith Poisson’s ratio set to zero, this is a pure one-dimensional bending
est.

In Fig. 20(b), the deformed configuration of the pinched cylinder is
hown for the 4 × 4 mesh. The displacements at node 𝐴 are shown in
ig. 21 for both structured and distorted 4 × 4 mesh. For structured
esh, the DKQ-5 curves match the reference curves, while the RM-
curves differ from the reference ones (although not shown, they

et much closer for the 8 × 8 mesh). For the distorted mesh, DKQ-5
till behaves excellently, while RM-5 totally fails. Note that very fine
0 × 80 distorted mesh is needed for RM-5 to match the reference
urves, while DKQ-5 matches them quite well already for the 8 × 8

mesh.

6.9. Twisted beam

The twisted beam example from Section 6.5 is also used for the
nonlinear analysis, and the results are compared with those from [43].
We use structured and distorted 4 × 24 mesh. Two load cases are
considered, shown in Figs. 22 and 24. The geometrical and material
parameters are:

𝐿 = 12 mm, 𝑤 = 1.1 mm, ℎ = 0.0032 mm, (95)
𝑟 = 2, 𝐸 = 29 ⋅ 107 MPa, 𝜈 = 0.22.

Fig. 23 shows displacement curves for node 𝐴 for the first loading
case. For the structured mesh, the DKQ-5 curves align very well with
the reference curves from [43]. A similarly good match is obtained
also for the RM-5 curves for displacement 𝑢𝑧, but not for displacement
𝑢𝑦 (we note that the latter RM-5 curve almost perfectly aligns with
the reference one for denser 12 × 72 mesh). For the distorted mesh,
the DKQ-5 curves still match very well with the reference curves. On
the other end, the RM-5 curves differ significantly (and come close
to the reference ones only for very fine 32 × 192 mesh). Fig. 25
presents displacements at node 𝐴 for the second load case. For the
structured mesh, DKQ-5 shows very good alignment with the reference
curves (practically perfect alignment is reached for the 8 × 48 mesh).
On the other hand, the RM-5 results differ from the reference curves
considerably (although not shown, they come very close only for fine
16 × 96 mesh). For the distorted mesh, the RM-5 results are extremely
poor and the convergence is lost, while mesh distortion does not affect
the DKQ-5 results at all (note that for mesh refinement to 8 × 48
elements, we reach a practically perfect alignment between DKQ-5 and
reference curves).
14
6.10. Helical beam

Following [4], we analyse clamped beam with cross section rotating
by 360◦ along the beam axis, see Fig. 26(a), where the loading is also
shown. The following geometrical and material data apply:

𝐿 = 10 mm, 𝑤 = 4 mm, ℎ = 0.0032 mm, (96)
𝑟 = 2, 𝐸 = 29 ⋅ 106 MPa, 𝜈 = 0.22.

We used structured and distorted meshes with 6 × 20 finite elements.
The DKQ-5 curves in Fig. 27 match very well the reference curves

for both, structured and unstructured mesh. On the other hand, the
RM-5 results for the distorted mesh are very poor: zero displacement
in the 𝑦-direction and linearly varying displacement in the 𝑧-direction
are computed for the increasing load and unstructured mesh, while for
the structured mesh they show a rather good match. Note that DKQ-
5 yields a practically perfect alignment with the reference curves for
both structured and distorted meshes when 12 × 40 elements are used,
and RM-5 yields a good match with the reference curves for 12 × 40
structured mesh and 30 × 100 distorted mesh.

6.11. Raasch’s hook

Raasch’s hook is a difficult test for shell finite elements, see e.g. [4]
and [43]. The hook is clamped at one edge and subjected to point
force at the opposite edge, see Fig. 28. The hook was meshed with
(2𝑁 +3𝑁)×𝑁 finite elements, where 𝑁 is a number of elements across
the width of the hook, 2𝑁 is a number of elements across radius 𝑟,
and 3𝑁 is a number of elements across radius 𝑅. Used material and
geometrical data were the same as in [4]:

𝑅 = 46 mm, 𝑟 = 14 mm, 𝑤 = 20 mm, 𝜑 = 150◦,
(97)

𝛽 = 60◦, ℎ = 0.02 mm, 𝑟𝑅 = 2, 𝑟𝑟 = 1.5,

𝐸 = 3.3 ⋅ 103 MPa, 𝜈 = 0.3,

The results are presented in Fig. 29, where displacements at node
𝐴 in the 𝑥 and 𝑧 directions are shown. For Fig. 29(a), a structured
mesh with (8 + 12) × 4 elements was used, and for Fig. 29(b), the same
number of elements were used for distorted mesh with distortion factors
𝑟𝑅 and 𝑟𝑟. From Fig. 29(a) we can see a noticeable difference from
the reference curves for the DKQ-5 element. The RM-5 curves differ
even more from the reference curves. From Fig. 29(b) we can observe
that mesh distortion does not influence much the DKQ-5 results. On
the contrary, RM-5 results suffer a lot from the mesh distortion. For a
denser mesh with 𝑁 = 16, we get an excellent match with the reference
results from [4] for DKQ-5.

6.12. Hemisphere on elastic substrate

In the final example, we test our finite element formulation on a
hemisphere, attached to an elastic foundation. We want to check if
the DKQ-5 results are comparable with those presented in the [25],
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Fig. 20. Cylindrical panel, nonlinear analysis: (a) undeformed and (b) deformed configuration meshed with 4 × 4 elements.
Fig. 21. Cylindrical panel, nonlinear analysis: displacement comparison for (a) structured mesh and (b) distorted mesh.
Fig. 22. Twisted beam, nonlinear analysis for vertical load: (a) undeformed and (b) deformed configurations meshed with 4 × 24 elements.
Fig. 23. Twisted beam, nonlinear analysis for vertical load: displacement comparison for (a) structured mesh and (b) distorted mesh.
15
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t
s
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Fig. 24. Twisted beam, nonlinear analysis for horizontal load: (a) undeformed and (b) deformed configuration meshed with 4 × 24 elements.
Fig. 25. Twisted beam, nonlinear analysis for horizontal load: displacement comparison for (a) structured mesh and (b) distorted mesh.
Fig. 26. Helical beam: (a) undeformed and (b) deformed configurations meshed with 6 × 20 elements.
Fig. 27. Helical beam: displacement comparison for (a) structured mesh and (b) distorted mesh.
where a special-purpose element was used. The material and geometric
parameters are:

𝑅 = 20 mm, ℎ = {0.4, 0.6, 0.8, 1.0} mm, 𝐸 = 2.1 MPa,
(98)

𝜈 = 0.49, 𝐾𝑠 = {0.2610, 0.1738, 0.1302, 0.1039} N∕mm3.

where 𝐾𝑠 is the stiffness of elastic foundation (that has direction
owards the centre of the radius of the hemisphere) representing the
ubstrate. As the parameter set (98) suggests, four different cases are
olved. Only for the purpose of this example, the element formulation
16
was redesigned in order to have displacements in the nodes of DKQ-5 fi-
nite element in the local orthonormal coordinate systems 𝐼𝑬1, 𝐼𝑬2, 𝐼𝑨3.
This enabled restraining the displacements in the tangential direction
on the bottom edge of the shell (both rotations were restrained too).
The path-following method [44] was used to compute the solution.
There are multiple buckling modes close to one another, but we man-
aged to get the one with the minimal energy by using the fact that
the meshing can be never symmetric for the half-sphere (due to Euler’s
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Fig. 28. Raasch’s hook: (a) undeformed and (b) deformed configurations of the mesh with (8 + 12) × 4 finite elements.
Fig. 29. Raasch’s hook: displacement comparison for (a) structured mesh and (b) distorted mesh.
Fig. 30. Development of the normal displacement field 𝑢3 on the hemisphere under pressure 𝑝. The data are: 𝑅 = 20.0 mm, ℎ = 0.8 mm, 𝐸 = 2.1 MPa, 𝜈 = 0.49 mm,
𝐾𝑠 = 0.1302 N/mm3, and the number of elements is 148 512.
c
w

theorem on tessellations by polygons), which imposes an initial mesh-
imperfections that change the first bifurcation point into the limit
point.

In Fig. 30, the evolution of the wrinkling pattern of the hemi-
sphere is shown for the thickness of the shell ℎ = 0.8 mm. By
comparing Fig. 30 with the results from [25], we found that dimpled
pattern starts to form at approximately the same pressure (i.e. 𝑝 ≈
−238 kPa). We also found that the distances between the dimples
are similar. In addition to the results shown in Fig. 30, we also
performed analysis for three other cases. In Fig. 31, the final defor-
mation configurations are shown for all four analysis. For each case,
we counted the number of dimples, calculated the average character-
istic wavelength and its standard deviation. The number of dimples
17
(left to right with respect to Fig. 31) was (227, 97, 56, 33), the aver-
age characteristic wavelength was 𝜆 = (3.522, 5.250, 6.959, 8.675) mm
and the standard deviation was (0.374, 0.245, 0.338, 0.411) mm for each
element of the parameter set. Theoretically calculated wavelengths
(see [45]) are 𝜆 = (3.642, 5.463, 7.283, 9.104) mm, which means that
only (3.3, 3.9, 4.4, 4.7) % relative difference is obtained via our nu-
merical procedure. For example in [25], the average characteristic
wavelengths for the same cases, as shown in the Fig. 31, are 𝜆 =
(3.488, 5.149, 6.988, 8.552) mm with standard deviation (0.317, 0.425,
0.528, 0.817) mm. The relative difference compared to the theoretically
alculated values are (4.2, 5.7, 4.1, 6.1) %. From the relative difference,
e can see that for almost all cases the DKQ-5 finite element model
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Fig. 31. Fully developed wrinkling patterns on the hemispheres for different 𝐾𝑠 and ℎ.
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ives slightly better results than the model presented in [25]. The
xception is only the 3rd case with thickness ℎ = 0.8 mm.

. Conclusion

We have applied the concepts of the discrete Kirchhoff formula-
ions (classically used for derivation of near optimal plate elements)
o derive a non-linear discrete Kirchhoff–Love four-node quadrilateral
hell finite element. The element uses interpolations that yield from
he cubic Hermite curves and bilinear Coons surface patch and impose
he 𝐺1-continuity at the nodes. The major advantage of the presented
ormulation, with respect to the full Kirchhoff–Love shell formulations,
s that it has less dofs/nodes. In fact, the element has 5 degrees of
reedom per node, three displacements and two rotations, i.e. the
ame number as the standard Reissner–Mindlin shell quadrilaterals (cf.
.g. MITC4 evaluated in e.g. [4]), but satisfies more stringent demands
n the geometric continuity of the approximated shell mid-surface.
he rotational degrees of freedom rotate the nodal tangent plane to
he mid-surface as well as the nodal normal-to-the-mid-surface unit
ector. The presented element uses the same data as the Reissner–
indlin quadrilaterals to construct the mesh: nodal coordinates and
id-surface normal vector. The advantages of the present element over

he Reissner–Mindlin formulations are the complete elimination of the
ransverse shear deformations and thus the elimination of the shear
ocking. Also the implementation of the hyperelastic and (elastoplastic)
aterial models (given in terms of principal stretches) can be simpler.

There have been a very few attempts to construct nonlinear discrete
irchhoff–Love shell quadrilaterals. As shown in this work, this is not
uite straightforward, an important issue being membrane locking. In
rder to eliminate the membrane locking, we used assumed natural
train method proposed in [3], which also makes quadrilateral shell
ormulations less sensitive to mesh distortion (as shown, e.g., in [4]).
ur numerical experiments indicate that the derived element is almost

nsensitive to mesh distortion as long as the distortion is not too ex-
reme. The element has six zero eigenvalues and passes the membrane
atch test. As for the bending patch test, it passes it for the structured
eshes but fails it for the distorted meshes, which ia a common prob-

em of shell elements with higher-order interpolation. Nevertheless, the
erformance of the derived element in linear and non-linear settings
s very good. The results of simulations on the shell–substrate systems
hown that the derived element can also be successfully used to solve
rinkling problems. The presented discrete Kirchhoff–Love shell formu-

ation can be seen as a step towards a 𝐺1-conforming Kirchhoff–Love
hell element that exploits surface patches and possesses 𝐺1-continuity
long the complete boundary of the element.
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Appendix

A.1. Solution of the curve functional

The functional is defined in (25) and the accompanying boundary
conditions are given in (27). By writing the Lagrange function

𝐿 = 𝐿(𝑡,𝑹(𝑡),𝑹(𝑡)′,𝑹(𝑡)′′) = 𝑹(𝑡)′′ ⋅𝑹(𝑡)′′, (99)

(𝑡) can be found from the condition:

𝐼(𝑹) = ∫

𝑡1

𝑡0
𝛿𝐿(𝑡,𝑹(𝑡),𝑹(𝑡)′,𝑹(𝑡)′′)𝑑𝑡 = 0. (100)

ariation of the Lagrange function is

𝐿 = 𝜕𝐿
𝜕𝑹

⋅ 𝛿𝑹 + 𝜕𝐿
𝜕𝑹′ ⋅ 𝛿𝑹

′ + 𝜕𝐿
𝜕𝑹′′ ⋅ 𝛿𝑹

′′. (101)

If (101) is inserted into (100), we get

𝛿𝐼(𝑹) = ∫

𝑡1

𝑡0
( 𝜕𝐿
𝜕𝑹

⋅ 𝛿𝑹 + 𝜕𝐿
𝜕𝑹′ ⋅ 𝛿𝑹

′ + 𝜕𝐿
𝜕𝑹′′ ⋅ 𝛿𝑹

′′)𝑑𝑡 = 0, (102)

here 𝛿𝑹′ = 𝑑𝛿𝑹∕𝑑𝑡, and 𝛿𝑹′′ = 𝑑2𝛿𝑹∕𝑑𝑡2. We integrate the second
nd the third expression inside the brackets in (102) by parts. First we
ntegrate by parts the second expression

𝑡1

𝑡0

𝜕𝐿
𝜕𝑹′ ⋅ 𝛿𝑹

′𝑑𝑡 =

∫

𝑡1

𝑡0

𝜕𝐿
𝜕𝑹′ ⋅

𝑑𝛿𝑹
𝑑𝑡

𝑑𝑡 =
[

𝜕𝐿
𝜕𝑹′ ⋅ 𝛿𝑹

]𝑡1

𝑡0
− ∫

𝑡1

𝑡0
𝛿𝑹 ⋅

𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′

)

𝑑𝑡. (103)

We proceed by integrating by parts the third expression

∫

𝑡1

𝑡0

𝜕𝐿
𝜕𝑹′′ ⋅ 𝛿𝑹

′′𝑑𝑡 =

∫

𝑡1

𝑡0

𝜕𝐿
𝜕𝑹′′ ⋅

𝑑2𝛿𝑹
𝑑𝑡2

𝑑𝑡 =
[

𝜕𝐿
𝜕𝑹′′ ⋅

𝑑𝛿𝑹
𝑑𝑡

]𝑡1

𝑡0

−∫

𝑡1

𝑡0

𝑑𝛿𝑹
𝑑𝑡

⋅
𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′′

)

𝑑𝑡. (104)

We further integrate by parts the second expression in (104)
𝑡1 𝜕𝐿

′′ ⋅
𝑑2𝛿𝑹 𝑑𝑡 =
∫𝑡0 𝜕𝑹 𝑑𝑡2
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B
E

a

T

V

𝛿

a

A

b

𝐼

[

𝜕𝐿
𝜕𝑹′′ ⋅

𝑑𝛿𝑹
𝑑𝑡

]𝑡1

𝑡0
−
[

𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′′

)

⋅ 𝛿𝑹
]𝑡1

𝑡0

+∫

𝑡1

𝑡0

𝑑2

𝑑𝑡2

(

𝜕𝐿
𝜕𝑹′′

)

⋅ 𝛿𝑹𝑑𝑡. (105)

Now we can reorganize (102) as

𝛿𝐼(𝑹) = ∫

𝑡1

𝑡0

𝜕𝐿
𝜕𝑹

⋅ 𝛿𝑹𝑑𝑡 +
[

𝜕𝐿
𝜕𝑹′ ⋅ 𝛿𝑹

]𝑡1

𝑡0
− ∫

𝑡1

𝑡0
𝛿𝑹 ⋅

𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′

)

𝑑𝑡

+
[

𝜕𝐿
𝜕𝑹′′ ⋅

𝑑𝛿𝑹
𝑑𝑡

]𝑡1

𝑡0
−
[

𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′′

)

⋅ 𝛿𝑹
]𝑡1

𝑡0

+∫

𝑡1

𝑡0

𝑑2

𝑑𝑡2

(

𝜕𝐿
𝜕𝑹′′

)

⋅ 𝛿𝑹𝑑𝑡 = 0, (106)

and rewrite the above to get

𝛿𝐼(𝑹) =
[

𝜕𝐿
𝜕𝑹′ ⋅ 𝛿𝑹

]𝑡1

𝑡0
+
[

𝜕𝐿
𝜕𝑹′′ ⋅

𝑑𝛿𝑹
𝑑𝑡

]𝑡1

𝑡0
−
[

𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′′

)

⋅ 𝛿𝑹
]𝑡1

𝑡0

+∫

𝑡1

𝑡0

(

𝜕𝐿
𝜕𝑹

− 𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′

)

+ 𝑑2

𝑑𝑡2

(

𝜕𝐿
𝜕𝑹′′

)

)

⋅ 𝛿𝑹𝑑𝑡 = 0. (107)

ased on (107), we can write the necessary conditions in the form of
uler–Lagrange equation as:

𝜕𝐿
𝜕𝑹

− 𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′

)

+ 𝑑2

𝑑𝑡2

(

𝜕𝐿
𝜕𝑹′′

)

= 𝟎. (108)

In (108) we need the following derivatives
𝜕𝐿
𝜕𝑹

= 2 𝜕𝑹
′′

𝜕𝑹
⋅𝑹′′ = 𝟎, (109)

𝜕𝐿
𝜕𝑹′ = 2 𝜕𝑹

′′

𝜕𝑹′ ⋅𝑹′′ = 𝟎 (110)

nd
𝜕𝐿
𝜕𝑹′′ = 2𝑹′′. (111)

Eqs. (109)–(111) are inserted into Euler–Lagrange equation (108) to get

𝑑2

𝑑𝑡2

(

2𝑹′′
)

= 2𝑹′′′′ = 𝟎, (112)

he solution of the differential equation of the 4th order 𝑹(𝑡)′′′′ = 𝟎 is

𝑹(𝑡) = 𝑡3𝑪4 + 𝑡2𝑪3 + 𝑡𝑪2 + 𝑪1. (113)

We write also natural boundary conditions based on Eq. (107)
[

𝜕𝐿
𝜕𝑹′ ⋅ 𝛿𝑹

]𝑡1

𝑡0
+
[

𝜕𝐿
𝜕𝑹′′ ⋅

𝑑𝛿𝑹
𝑑𝑡

]𝑡1

𝑡0
−
[

𝑑
𝑑𝑡

(

𝜕𝐿
𝜕𝑹′′

)

⋅ 𝛿𝑹
]𝑡1

𝑡0
= 0. (114)

ariations of geometrical boundary conditions written in Eq. (27) are

𝑹(𝑡0) = 𝛿𝑹(𝑡1) = 𝛿𝑹 ′(𝑡0) = 𝛿𝑹 ′(𝑡1) = 0, (115)

nd Eq. (114) is trivially fulfilled.

.2. Components of the covariant tangent basis vectors

The components of the covariant tangent basis vectors which we get
y solving the system of Eqs. (38) are

𝑘
𝛼1=

(

3
(

4 𝐼𝑬1 ⋅ 𝐽𝑬1 (−𝐽𝑬1 ⋅𝑿𝐼 + 𝐽𝑬1 ⋅𝑿𝐽 ) −

𝐼𝑬1 ⋅ 𝐽𝑬2 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐽𝑬1 ⋅𝑿𝐼 𝐼𝑬2 ⋅ 𝐽𝑬2 + 𝐼𝑬1

⋅𝐽𝑬2 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐽𝑬1 ⋅𝑿𝐽 𝐼𝑬2 ⋅ 𝐽𝑬2 +

𝐼𝑬1 ⋅ 𝐽𝑬1 𝐽𝑬1 ⋅𝑿𝐼 (𝐼𝑬2 ⋅ 𝐽𝑬2)2 − 𝐼𝑬1 ⋅ 𝐽𝑬1 𝐽𝑬1 ⋅𝑿𝐽 (𝐼𝑬2 ⋅ 𝐽𝑬2)2 −

2 𝐼𝑬1 ⋅𝑿𝐼

(

−4 + (𝐽𝑬1 ⋅ 𝐼𝑬2)2 + (𝐼𝑬2 ⋅ 𝐽𝑬2)2
)

+2 𝐼𝑬1 ⋅𝑿𝐽

(

−4 + (𝐽𝑬1 ⋅ 𝐼𝑬2)2 + (𝐼𝑬2 ⋅ 𝐽𝑬2)2
)

+

2 𝑬 ⋅ 𝑬 𝑬 ⋅ 𝑬 𝑬 ⋅𝑿 + 2 𝑬 ⋅ 𝑬 𝑬 ⋅ 𝑬 𝑬 ⋅𝑿 −
𝐼 1 𝐽 1 𝐽 1 𝐼 2 𝐼 2 𝐼 𝐼 1 𝐽 2 𝐼 2 𝐽 2 𝐼 2 𝐼
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2 𝐼𝑬1 ⋅ 𝐽𝑬1 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐼𝑬2 ⋅𝑿𝐽 − 2 𝐼𝑬1 ⋅ 𝐽𝑬2 𝐼𝑬2 ⋅ 𝐽𝑬2 𝐼𝑬2 ⋅𝑿𝐽 −

4 𝐼𝑬1 ⋅ 𝐽𝑬2 𝐽𝑬2 ⋅𝑿𝐼 + 𝐼𝑬1 ⋅ 𝐽𝑬2 (𝐽𝑬1 ⋅ 𝐼𝑬2)2 𝐽𝑬2 ⋅𝑿𝐼 −

𝐼𝑬1 ⋅ 𝐽𝑬1 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐼𝑬2 ⋅ 𝐽𝑬2 𝐽𝑬2 ⋅𝑿𝐼

+
(

−𝐼𝑬1 ⋅ 𝐽𝑬2

(

−4 + (𝐽𝑬1 ⋅ 𝐼𝑬2)2
)

+

𝐼𝑬1 ⋅ 𝐽𝑬1 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐼𝑬2 ⋅ 𝐽𝑬2

)

𝐽𝑬2 ⋅𝑿𝐽

)

)

∕𝛺, (116)

𝑘
𝐼𝛼2=

(

3
(

(

−4 + (𝐼𝑬1 ⋅ 𝐽𝑬2)2
)

𝐽𝑬1 ⋅ 𝐼𝑬2 (𝐽𝑬1 ⋅𝑿𝐼 − 𝐽𝑬1 ⋅𝑿𝐽 )

+2 𝐼𝑬1 ⋅ 𝐽𝑬2 𝐼𝑬1 ⋅𝑿𝐼 𝐼𝑬2 ⋅ 𝐽𝑬2 − 2 𝐼𝑬1 ⋅ 𝐽𝑬2 𝐼𝑬1 ⋅𝑿𝐽 𝐼𝑬2 ⋅ 𝐽𝑬2

+8 𝐼𝑬2 ⋅𝑿𝐼 −

2 (𝐼𝑬1 ⋅ 𝐽𝑬2)2 𝐼𝑬2 ⋅𝑿𝐼 − 8 𝐼𝑬2 ⋅𝑿𝐽 + 2 (𝐼𝑬1 ⋅ 𝐽𝑬2)2𝐼𝑬2 ⋅𝑿𝐽 −

4 𝐼𝑬2 ⋅ 𝐽𝑬2 𝐽𝑬2 ⋅𝑿𝐼 + (𝐼𝑬1 ⋅ 𝐽𝑬1)2
(

−2 𝐼𝑬2 ⋅𝑿𝐼 + 2𝐼𝑬2 ⋅𝑿𝐽 +

𝐼𝑬2 ⋅ 𝐽𝑬2 (𝐽𝑬2 ⋅𝑿𝐼 − 𝐽𝑬2 ⋅𝑿𝐽 )
)

+4 𝐼𝑬2 ⋅ 𝐽𝑬2 𝐽𝑬2 ⋅𝑿𝐽 +

𝐼𝑬1 ⋅ 𝐽𝑬1

(

𝐼𝑬1 ⋅ 𝐽𝑬2 (−𝐽𝑬1 ⋅𝑿𝐼 + 𝑗𝑬1 ⋅𝑿𝐽 )𝐼𝑬2 ⋅ 𝐽𝑬2 +

𝐽𝑬1 ⋅ 𝐼𝑬2
(

2 𝐼𝑬1 ⋅𝑿𝐼 − 2 𝐼𝑬1 ⋅𝑿𝐽 + 𝐼𝑬1 ⋅ 𝐽𝑬2 (−𝐽𝑬2 ⋅𝑿𝐼

+𝐽𝑬2 ⋅𝑿𝐽 )
)

)

)

)

∕𝛺, (117)

𝑘
𝐽𝛼1=

(

3
(

−2
(

−4 + (𝐼𝑬1 ⋅ 𝐽𝑬2)2
)

(𝐽𝑬1 ⋅𝑿𝐼 − 𝐽𝑬1 ⋅𝑿𝐽 ) +

𝐼𝑬1 ⋅ 𝐽𝑬2 (−𝐼𝑬1 ⋅𝑿𝐼 + 𝐼𝑬1 ⋅𝑿𝐽 ) 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐼𝑬2 ⋅ 𝐽𝑬2

+(𝐼𝑬1 ⋅ 𝐽𝑬2)2 𝐽𝑬1 ⋅ 𝐼𝑬2 (𝐼𝑬2 ⋅𝑿𝐼 − 𝐼𝑬2 ⋅𝑿𝐽 ) +

4 𝐽𝑬1 ⋅ 𝐼𝑬2 (−𝐼𝑬2 ⋅𝑿𝐼 + 𝐼𝑬2 ⋅𝑿𝐽 )

+𝐼𝑬1 ⋅ 𝐽𝑬1

(

𝐼𝑬1 ⋅𝑿𝐼

(

−4 + (𝐼𝑬2 ⋅ 𝐽𝑬2)2
)

−

𝐼𝑬1 ⋅𝑿𝐽

(

−4 + (𝐼𝑬2 ⋅ 𝐽𝑬2)2
)

+𝐼𝑬1 ⋅ 𝐽𝑬2

(

𝐼𝑬2 ⋅ 𝐽𝑬2 (−𝐼𝑬2 ⋅𝑿𝐼 + 𝐼𝑬2 ⋅𝑿𝐽 ) +

2 (𝐽𝑬2 ⋅𝑿𝐼 − 𝐽𝑬2 ⋅𝑿𝐽 )
)

)

+ 2 𝐼𝑬2 ⋅ 𝐽𝑬2

×
(

(−𝐽𝑬1 ⋅𝑿𝐼 + 𝐽𝑬1 ⋅𝑿𝐽 ) 𝐼𝑬2 ⋅ 𝐽𝑬2 +

𝐽𝑬1 ⋅ 𝐼𝑬2 (𝐽𝑬2 ⋅𝑿𝐼 − 𝐽𝑬2 ⋅𝑿𝐽 )
)

)

)

∕𝛺, (118)

𝑘
𝐽𝛼2=

(

3
(

𝐼𝑬1 ⋅ 𝐽𝑬1 (−𝐼𝑬1 ⋅𝑿𝐼 + 𝐼𝑬1 ⋅𝑿𝐽 ) 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐼𝑬2 ⋅ 𝐽𝑬2 +

𝐼𝑬1 ⋅ 𝐽𝑬2

(

𝐼𝑬1 ⋅𝑿𝐼

(

−4 + (𝐽𝑬1 ⋅ 𝐼𝑬2)2
)

−𝐼𝑬1 ⋅𝑿𝐽

(

−4 + (𝐽𝑬1 ⋅ 𝐼𝑬2)2
)

+

𝐼𝑬1 ⋅ 𝐽𝑬1

(

2𝐽𝑬1 ⋅𝑿𝐼 − 2 𝐽𝑬1 ⋅𝑿𝐽 + 𝐽𝑬1 ⋅ 𝐼𝑬2 (−𝐼𝑬2 ⋅𝑿𝐼 +

𝐼𝑬2 ⋅𝑿𝐽 )
)

)

+ (𝐼𝑬1 ⋅ 𝐽𝑬1)2
(

𝐼𝑬2 ⋅ 𝐽𝑬2 (𝐼𝑬2 ⋅𝑿𝐼 − 𝐼𝑬2 ⋅𝑿𝐽 )

−2 𝐽𝑬2 ⋅𝑿𝐼 + 2 𝐽𝑬2 ⋅𝑿𝐽

)

+

2
(

𝐽𝑬1 ⋅ 𝐼𝑬2 (𝐽𝑬1 ⋅𝑿𝐼 − 𝐽𝑬1 ⋅𝑿𝐽 ) 𝐼𝑬2 ⋅ 𝐽𝑬2

+2 𝐼𝑬2 ⋅ 𝐽𝑬2 (−𝐼𝑬2 ⋅𝑿𝐼 + 𝐼𝑬2 ⋅𝑿𝐽 ) +

4 (𝐽𝑬2 ⋅𝑿𝐼 − 𝐽𝑬2 ⋅𝑿𝐽 ) + (𝐽𝑬1 ⋅ 𝐼𝑬2)2 (−𝐽𝑬2 ⋅𝑿𝐼 + 𝐽𝑬2 ⋅𝑿𝐽 )
)

)

)

∕𝛺, (119)

where 𝛺 is

𝛺 =

(

(𝑡0 − 𝑡1)
(

(

−4 + (𝐼𝑬1 ⋅ 𝐽𝑬2)2
) (

−4 + (𝐽𝑬1 ⋅ 𝐼𝑬2)2
)

−

2 𝐼𝑬1 ⋅ 𝐽𝑬1 𝐼𝑬1 ⋅ 𝐽𝑬2 𝐽𝑬1 ⋅ 𝐼𝑬2 𝐼𝑬2 ⋅ 𝐽𝑬2 −
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4 (𝐼𝑬2 ⋅ 𝐽𝑬2)2 + (𝐼𝑬1 ⋅ 𝐽𝑬1)2
(

−4 + (𝐼𝑬2 ⋅ 𝐽𝑬2)2
)

)

)

. (120)

A.3. Interpolation functions

The interpolation functions in (48)–(50), which stem from the cubic
Hermite edge curves and the bilinear Coons patch, have the following
form:

1𝑁1(𝜉1, 𝜉2) = −1
8
(𝜉1 − 1)(𝜉2 − 1)(−2 + 𝜉1 + (𝜉1)2 + 𝜉2 + (𝜉2)2),

(121)

2𝑁1(𝜉1, 𝜉2) =
1
8
(𝜉1 + 1)(𝜉2 − 1)(−2 − 𝜉1 + (𝜉1)2 + 𝜉2 + (𝜉2)2),

3𝑁1(𝜉1, 𝜉2) = −1
8
(𝜉1 + 1)(𝜉2 + 1)(−2 − 𝜉1 + (𝜉1)2 − 𝜉2 + (𝜉2)2),

4𝑁1(𝜉1, 𝜉2) =
1
8
(𝜉1 − 1)(𝜉2 + 1)(−2 + 𝜉1 + (𝜉1)2 − 𝜉2 + (𝜉2)2),

1𝑁2(𝜉1, 𝜉2) = −1
8
(𝜉1 − 1)2(𝜉1 + 1)(𝜉2 − 1), (122)

2𝑁2(𝜉1, 𝜉2) = −1
8
(𝜉1 + 1)2(𝜉1 − 1)(𝜉2 − 1),

3𝑁2(𝜉1, 𝜉2) =
1
8
(𝜉1 + 1)2(𝜉1 − 1)(𝜉2 + 1),

4𝑁2(𝜉1, 𝜉2) =
1
8
(𝜉1 − 1)2(𝜉1 + 1)(𝜉2 + 1),

1𝑁3(𝜉1, 𝜉2) = −1
8
(𝜉1 − 1)(𝜉2 − 1)2(𝜉2 + 1), (123)

2𝑁3(𝜉1, 𝜉2) =
1
8
(𝜉1 + 1)(𝜉2 − 1)2(𝜉2 + 1),

3𝑁3(𝜉1, 𝜉2) =
1
8
(𝜉1 + 1)(𝜉2 + 1)2(𝜉2 − 1),

4𝑁3(𝜉1, 𝜉2) = −1
8
(𝜉1 − 1)(𝜉2 + 1)2(𝜉2 − 1).
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