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a b s t r a c t 

Many shape memory alloy (SMA) applications, such as biomedical devices, electromechan- 

ical actuators, and elastocaloric cooling devices, are based on thin-walled flat or shell-like 

structures. An advanced design of such structures requires the development of an efficient 

and accurate numerical tool for simulations of very thin and curved SMA structures that 

may experience large deformations and even buckling upon thermo-mechanical loading. So 

far, finite element models for finite strain deformations of SMA structures have been based 

on 3D solid formulations, which are relatively inefficient for solving (thin) shell problems. 

In this paper, we present a finite element model for the analysis of shape memory alloy 

shells. Our model is based on a 7-parameter, large-rotation, one-director shell formulation, 

which takes into account a fully three-dimensional form of the constitutive equations for 

the isothermal transformations of isotropic superelasticity, as well as the shape-memory 

effect in a simplified way. In fact, we present three 4-node shell finite elements for SMAs. 

Two of them use the assumed natural strain concepts for the transverse shear strains, 

through-the-thickness normal strain, and membrane strains. The third element is a com- 

bination of the assumed natural strain and the enhanced assumed strain concepts, applied 

to satisfy the zero through-the-thickness-normal-stress condition for thin geometries to 

a high degree of accuracy. After a detailed description of the SMA finite element models 

for shells in the first part of the paper, numerical examples in the second part illustrate 

the approach. Compared to 3D solid SMA formulations, our results show excellent accu- 

racy, even with a significantly reduced number of degrees of freedom, which consequently 

translates into a reduction in the computational time. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

1. Introduction 

Shape memory alloys (SMAs) belong to a group of smart materials that are characterized by a change in their properties

when acted upon by external stimuli (stress and temperature for SMAs). Typically, SMAs are divided into Ni-Ti-based, Cu- 

based, and Fe-based groups, among which Ni-Ti is the most widely used in a large number of applications [1] . In medicine,
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Fig. 1. Shape-memory effect and superelasticity (left). Phase diagram (right). 

Fig. 2. Stress-strain-temperature diagram and crystal lattices: shape-memory effect (left) and superelasticity (right). 

 

 

 

 

 

 

 

 

 

 

Ni-Ti is used for stents, surgical tools and bone implants due to its biocompatibility and comparable material properties with 

those of bone [2–4] . In robotics, SMAs are used as noise-free, small-size actuators with a large force-to-weight ratio [5] . In

aeronautics, SMAs are employed for actuators, vibration-damping elements, seals, deployment mechanisms [6,7] , and mor- 

phing wings [8] . In civil engineering, SMAs are used as seismic-response-control and damping elements [9] . Applications in

energy and process engineering are also under intensive development [10,11] , especially in elastocaloric cooling technology 

[12] , due to its great potential as an alternative to vapor-compression refrigeration technology, which is relatively inefficient 

and still uses environmentally harmful refrigerants [13] . 

SMAs have two special properties, illustrated in Fig. 1 (left). First, the shape-memory effect (SME) is the ability to recover

an initial shape after being deformed and subsequently subjected to high temperature, and second, superelasticity (SE) is the 

ability to recover from large deformations (up to 8%) without any permanent deformation. Both properties are attributed to 

the fact that SMAs are found in two different phases, see Fig. 1 (right): a low-temperature product phase called martensite

(M) and a high-temperature parent phase called austenite (A). Because the crystal structure of A is highly symmetric, it exists

in only one variant, while M can be found in many variants due to the lower symmetry of its crystal structure. Twinned

or self-accommodated martensite M 

t , which is stable at low stresses, occurs in different variants. At a critical stress σs the

detwinned (or stress-induced) martensite M 

d (the variant with the preferable orientation for a given stress state) occurs. 

Figure 2 (left) shows the stress-strain-temperature diagram of the SME and the corresponding crystal lattices. When M 

is subjected to mechanical loading at low temperature, it deforms and the detwinning process occurs. On the macro-scale, 

this is a change of shape, while on the micro-scale, martensite variants occur that are preferable for the given stress state.

During unloading, martensite variants do not change; therefore, pseudo-plastic deformation ε SME is present at zero loads. 

Shape recovery occurs by subjecting the material to a temperature above the austenitic finish temperature A f , where only

A is stable. During a temperature increase, the phase transformation from M to A begins at the austenitic transformation 

start temperature A s and finishes at A . On the other hand, cooling of a SMA causes a martensitic transformation (MT) with
f 

2 



L. Porenta, M. Lavren ̌ci ̌c, J. Dujc et al. Commun Nonlinear Sci Numer Simulat 101 (2021) 105897 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the formation of self-accommodated martensite variants M 

t . The transformation begins at the martensitic transformation’s 

start temperature M s and ends at the martensitic transformation’s finish temperature M f . In contrast to heating, cooling 

to its initial temperature does not cause any shape change (except the volume change due to thermal contraction). Shape 

recovery is possible if the deformation is not too large, otherwise, permanent plastic deformation occurs, as shown in Fig. 2 .

Superelasticity (also called pseudoelasticity) is exhibited by a SMA when it is mechanically loaded and unloaded above 

the temperature A f . A hysteresis occurs, as shown in Fig. 2 (right): while loading, stress-induced martensite M 

d is formed

during an exothermic MT (which is observed at the macroscopic level as a large deformation), and while unloading, an 

endothermic reverse MT from M to A takes place and the deformation vanishes. The mechanism is not elastic because 

the transformation, i.e., the change of the crystal lattice, occurs. The reversible deformation is limited by the maximum 

transformation strain ε t . Depending on the strain rate and the heat exchange between the SMA and the environment, the

SMA can heat up or cool down during the transformation, which is called the elastocaloric effect. 

Numerous SMA material models have been developed, and these can be roughly grouped into three categories. Micro- 

models focus on phenomena such as grain nucleation and growth, detwinning, and reorientation [14,15] . Micro-macro- 

models combine microscopic features with macro-scale thermodynamics [16,17] , while macro-models use thermodynamic 

variables to describe the macro-observed phenomena. Many of the macro-models describe superelasticity and the shape 

memory effect for small strains [18,19] . Some include tension-compression asymmetry based on a modified transformation 

limit function [20,21] and the difference between austenite and martensite material properties by a nonlinear order parame- 

ter [22] . To model detwinning and reorientation, a separate treatment of self-accommodated and stress-induced martensite 

is required, as well as a criterion for reorientation [23–26] , while the effect of cyclic loading can be considered using an

internal variable representing the accumulated martensite [27–29] . It is worth mentioning that not only has isothermal su- 

perelastic behavior been studied: temperature changes during a transformation were modeled by treating the released latent 

heat as a volume heat source [30–32] . 

The finite strain macro-models are often an extension of the small strain formulations, see, e.g., [33–35] . They apply

a multiplicative decomposition of the deformation gradient F , e.g., [33,36] . One of the first finite strain SMA models was

proposed by Lubliner and Auricchio [37,38] . Some models decompose F into several parts, i.e., elastic, transformation and 

plastic [39] , elastic, transformation and thermal [40] , or elastic and transformation, with the latter further divided into a

recoverable and plastic part (that accounts for the dissipation during the transformation and not for plastic deformations) 

[41] . Heat generation during the transformation (due to latent-heat release) was considered in, e.g., [42–44] , compression- 

tension asymmetry in, e.g., [42,45] , detwinning and reorientation in, e.g., [46,47] , and anisotropy due to crystallographic 

texture in, e.g., [45,4 8,4 9] . The shape memory effect and superelastic response, without using the martensite volume fraction

as an internal variable, were studied in [36,50,51] , and the effects due to cyclic loading were considered in, e.g., [52,53] . 

The main motivation for our work stems from the need for an accurate prediction of the response of mechanically loaded

SMA structures, which could be applied in elastocaloric devices. Obviously, thin-walled structures are preferable as they 

enable the rapid (efficient) transfer of heat [54] . Currently, the macroscopic SMA material models have been implemented 

almost exclusively into 3D solid finite elements, which can be very inefficient for the modeling of thin structures. To the best

of our knowledge, there have been only a few SMA formulations devised for structural elements; e.g., in [55] for plates, in

[56,57] for membranes, in [58] for solid-beams, and in [59] for a small strain corotational shell formulation. There have been 

no attempts to combine a finite strain SMA material model with a shell finite element formulation, although it is well known

that solid finite elements can be very inaccurate when representing the bending of thin-walled structures. For this reason, 

it seems rational to focus on the development of shell finite element formulations for the simulation of thin and curved

SMA structures, especially because there exist thin-walled formulations that can incorporate fully 3D constitutive models. 

Let us mention 7-parameter (7-p) shells and solid-shells (e.g. [60] ), the latter being rotation-free that simplify computer 

implementation. 

The main focus of this work is combining the finite strain SMA material model with the 7-p shell finite element model. To

this end, three 7-p, 4-node, shell finite element formulations were designed with the extensive use of the assumed natural 

strain (ANS) concepts that were originally developed for 5-parameter shell formulations. In particular, our 7-p formulation 

that is called 2ANS uses the ANS concepts for the transverse-shear strains [61] and the through-the-thickness stretching 

[62] . The 7-p formulation that is called 3ANS additionally uses the ANS concept for the membrane strains, in particular,

the approach that was proposed in [63] and extensively tested in [63–66] , is adopted. The membrane ANS makes the 3ANS

formulation low-sensitive to mesh distortion. The third 7-p shell formulation is a combination of the ANS and the enhanced 

assumed-strain (EAS) concepts designed to better enforce the zero-through-the-thickness-normal-stress condition for thin 

SMAs, with respect to the 2ANS and 3ANS formulations. It must be emphasized that the resulting 7-p shell finite element

formulations are a much better choice than the solid finite element formulations for the numerical simulations of very thin 

and curved SMA structures that can undergo large deformations, large rotations, and buckling, an understanding of which is 

an interest for some SMA applications, e.g., seismic applications and elastocaloric cooling technology. 

The rest of the text is organized in the following way. Section 2 revises the finite strain SMA material model from [35,36] .

The focus is on an effective solution procedure for local systems of equations when performing an update of the internal

variables. In Section 3 , the 7-p shell finite element formulations are presented. In Section 4 , numerical examples illustrate

the capability of the derived formulation, and the conclusions are drawn in Section 5 . 
3 



L. Porenta, M. Lavren ̌ci ̌c, J. Dujc et al. Commun Nonlinear Sci Numer Simulat 101 (2021) 105897 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Finite strain constitutive model for SMA 

2.1. Continuous framework 

In this section we revise the 3D constitutive model for a SMA that was originally presented by Souza et al. [50] for small

strains and later extended to finite strains by Evangelista et al. [35] and Arghavani et al. [36] . 

2.1.1. Model development 

For a deformable body, the deformation gradient F , det F = J > 0 , can be decomposed with polar decomposition as F =
R U = V R , where U and V are the symmetric positive definite right and left stretch tensors, respectively, and R is a proper 

orthogonal rotation tensor. The right Cauchy-Green deformation tensor and the Green-Lagrange strain tensor are: 

C = F T F , E = 

1 

2 

( C − 1 ) , (1) 

where 1 is the identity tensor. Similar to the finite-strain plasticity [67] , a multiplicative decomposition of F into elastic F e 
and transformation F t parts is postulated: 

F = F e F t (2) 

that introduces the initial (i.e., undeformed), intermediate (i.e., transformed) and current (i.e., deformed) configurations. 

Furthermore, the elastic right Cauchy-Green deformation tensor C e and the transformation right Cauchy-Green deformation 

tensor C t can be defined with respect to the intermediate and reference configurations as: 

C e = F T e F e , C t = F T t F t (3) 

and Eqs. (1) 1 , (2) , and (3) 1 can be used to relate C e with C as: 

C = F T F = F T t F 
T 
e F e F t ⇒ C e = F −T 

t C F −1 
t . (4) 

It turns out to be useful to define the velocity gradient tensor L = 

˙ F F −1 and the symmetric and skew-symmetric parts

of L that are the rate of the deformation tensor d = 

1 
2 ( L + L T ) and the vorticity tensor w = 

1 
2 ( L − L T ) . With respect to the

dot denoting the time derivative, it is worth noting that for time-independent material models, such as the one considered 

here, the notion “time” is used for the loading parameter that linearly increases/decreases the level of the external loading. 

The relation between d and the time derivative of the Green-Lagrange tensor ˙ E (i.e., the strain rate) can be obtained by 

using L as (see Eq. (A.1) in Appendix): 

˙ E = 

1 

2 

˙ C = F T d F . (5) 

According to the experimental results, the transformation is (almost) isochronic, which is expressed by det F t = 1 . Taking 

the time derivative gives tr d t = 0 (see Eq. (A.2) in Appendix), where d t = 

1 
2 ( L t + L T t ) and L t = 

˙ F t F 
−1 
t . 

The Helmholtz free energy ψ must depend on F e only through the elastic right Cauchy-Green deformation tensor C e , 

because of the material objectivity. It is assumed that ψ can be additively split into the elastic ψ e and transformation parts

ψ t , and that the latter depends on the transformation Green-Lagrange deformation tensor E t = 

1 
2 ( C t − 1 ) (which plays the

role of the internal variable) and temperature T : 

ψ = ψ( C e , E t , T ) = ψ e ( C e ) + ψ t ( E t , T ) . (6)

Moreover, let ψ be valid for both the austenite and martensite phases. For an isotropic SMA, the hyperelastic strain-energy 

function ψ e ( C e ) can be expressed by the invariants of C e as ψ e ( C e ) = ψ e (I C e , II C e , I I I C e ) . Let us choose the following strain-

energy function of the neo-Hookean type: 

ψ e ( C e ) = 

1 

2 

μ (I C e − 3 − log I I I C e ) + 

1 

4 

λ (I I I C e − 1 − log I I I C e ) , (7)

where μ and λ are Lams coefficients. Because II I C e = det C e = det ( C C −1 
t ) , see Eq. (4) , and I C e = tr C e = tr ( F −T 

t C F −1 
t ) =

tr ( C F −1 
t F −T 

t ) = tr ( C C −1 
t ) , the strain-energy function ( Eqs. (7) and (6) ) can be rewritten in terms of the tensors from the

reference configuration 

ψ e ( C e ) = 

˜ ψ e ( C , C t ) and ψ( C e , E t , T ) = 

˜ ψ ( C , C t , T ) . (8)

The transformation part ψ t of the Helmholz free energy is chosen after [36] as: 

ψ t ( E t , T ) = τM 

(T ) || E t || + 

1 

2 

h̄ || E t || 2 + I (|| E t || ) , (9)

where τM 

(T ) provides the temperature dependency of the material response 

τM 

(T ) = β 〈 T − T 0 〉 , (10) 
4 
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h̄ is the material-hardening parameter due to the transformation, β is a material parameter related to the dependence of 

the critical stress on the temperature, and T 0 = M f . Furthermore, the Macaulay bracket used here is defined as 〈 x 〉 = 

x −| x | 
2 ,

and the norm in Eq. (9) is given as || A || = 

√ 

A : A = 

√ 

tr ( A A 

T ) . The indicator function I (|| E t || ) in Eq. (9) 

I (|| E t || ) = 

{
0 || E t || ≤ ε L 
∞ otherwise 

(11) 

handles the constraint on the transformation strain norm 

|| E t || ≤ ε L , (12) 

where ε L is another parameter of the material model linked to the maximum transformation strain norm at the end of the

phase transformation. The indicator function states that the violation of inequality (12) is inadmissible. 

The Clausius-Duhem inequality of the second law of thermodynamics states the following: 

D = S : 
1 

2 

˙ C − ( ˙ ψ + η ˙ T ) ≥ 0 , (13) 

where S is the second Piola-Kirchhoff stress tensor and η is the entropy. By inserting Eq. (6) into Eq. (13) , we obtain: 

D = S : 
1 

2 

˙ C − ∂ ψ e 

C e 
: ˙ C e ︸ ︷︷ ︸ 

➀

−∂ ψ t 

E t 
: ˙ E t ︸ ︷︷ ︸ 

➁

−∂ ψ t 

T 
: ˙ T − η ˙ T ︸ ︷︷ ︸ 
➂

≥ 0 . (14) 

Let us elaborate on the expression labeled by ➀. The time derivative of ˙ C e can be obtained by using Eq. (4) and the relation

L −T 
t = −L T t (see Eq. (A.3) in Appendix): 

˙ C e = −L T t C e + F −T 
t 

˙ C F −1 
t − C e L t . (15) 

Inserting Eq. (15) into ➀ yields (see Eq. (A.4) in Appendix): 

S : 
1 

2 

˙ C − ∂ ψ e 

C e 
: ˙ C e = 

(
S − 2 F −1 

t 

∂ ψ e 

C e 
F −T 

t 

)
: 

1 

2 

˙ C ︸ ︷︷ ︸ 
1 

+ 2 C e 
∂ ψ e 

C e 
: L t ︸ ︷︷ ︸ 

2 

. (16) 

For an elastic isothermal case, where D = 0 and there is no change in transformation, the expression for the stress tensor

and entropy follow from Eq. (14) and Eq. (16) as: 

D = 0 , ˙ E t = L t = 0 ⇒ 

{
S = 2 F −1 

t 
∂ψ e 

C e 
F −T 

t 

η = − ∂ψ t 

T 

(17) 

Because of Eq. (4) , we can conclude that 

F −1 
t 

∂ψ e 

C e 
F −T 

t = 

∂ ˜ ψ e 

C 
⇒ S = 2 

∂ ˜ ψ e 

C 
. (18) 

It is assumed that the relations (17) are also valid in the case of a transformation that remains to be considered. To this end,

let us introduce the back-stress tensor X = 

∂ ψ t 
E t 

and examine the part of the expression (14) , labelled with ➁ (see Eq. (A.5) in

Appendix): 

X = τM 

(T ) 
∂ || E t || 

E t 
+ 

1 

2 

h 

∂ || E t || 2 
E t 

+ 

∂ I (|| E t || ) 
E t 

= h E t + ( τM 

(T ) + γ ) N , (19) 

where N = 

E t || E t || and γ is a sub-differential of the indicator function ∂I (|| E t || ) : 

γ = 

{ ≥ 0 || E t || = ε L 
0 || E t || < ε L 
undefined otherwise 

. (20) 

The back-stress tensor X depends on the temperature (for T > M f ) and the transformation strain tensor. The parameter γ
controls the end of the phase transformation and ensures the elastic response of the martensite after a full transformation. 

By using Eqs. (16) , (17) and (19) in (14) , the inelastic dissipation for the case of transformation can be expressed as: 

D t = 2 C e 
∂ ψ e 

C e ︸ ︷︷ ︸ 
P 

: L t − X : ˙ E t > 0 . (21) 
5 
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The product X : ˙ E t in (21) can be further manipulated by using (5) and the relation tr ( A B ) = tr ( B A ) to obtain X : ˙ E t =
F t X F T t : d t . The decomposition L t = d t + w t and the symmetry of P result in P : w t = 0 (because w t is skew-symmetric), 

therefore the following holds P : L t = P : d t . These allow us to rewrite the dissipation inequality (21) as: 

D t = P : d t − F t X F T t ︸ ︷︷ ︸ 
K 

: d t = ( P − K ) ︸ ︷︷ ︸ 
Z 

: d t > 0 . (22) 

By further introducing a transformation function f ( Z ) ≤ 0 (with its proposal left open for now) and assuming that the trans-

formation case corresponds to the stress state giving f ( Z ) = 0 , the evolution equation for the transformation case can be

obtained. We postulate that among all the admissible states of transformation, we choose the one that renders the maxi- 

mum dissipation D t or the minimum of −D t . Recasting the original problem into the unconstrained minimization problem 

is possible by using the method of Lagrangian multipliers with the Lagrangian function defined as: 

L ( Z , ˙ ζ ) = −D t ( Z ) + 

˙ ζ f ( Z ) , (23) 

where ˙ ζ is the Lagrange multiplier. In order to find the minimum of L ( Z , ˙ ζ ) , the stationarity, primal feasibility, dual feasi-

bility and complementary slackness conditions must hold: 

∂ L ( Z , ˙ ζ ) 

Z 

= 0 , f ( Z ) ≤ 0 , ˙ ζ ≥ 0 , ˙ ζ f ( Z ) = 0 . (24) 

From the stationarity condition (24) 1 , the evolution equation for the rate of transformation deformation d t is obtained: 

−d t + 

˙ ζ ∂ f ( Z ) 
Z 

= 0 ⇒ d t = 

˙ ζ ∂ f ( Z ) 
Z 

. (25) 

Let us choose the following expression for the transformation function (after [35,36] ), which is similar to the classic yield

functions for metals: 

f ( Z ) = || Z 

D || − R, (26) 

where Z 

D = ( P − K ) D is a deviatoric part of Z and the material parameter R defines the radius of the elastic domain and

has a similar role as the yield stress in plasticity. By further using the relation for the symmetric tensor ∂ || A || 
A 

= 

A 
|| A || ,

Eq. (25) yields the following evolution equation: 

d t = 

˙ ζ
Z 

D 

|| Z 

D || , (27) 

which completes the list of the basic equations for the considered SMA material model. 

2.1.2. Equations in the reference configuration 

To have the equations of the SMA material model given with respect to the reference configuration, the evolution 

Eq. (27) must be recast in terms of C and E t = 

1 
2 ( C t − 1 ) (or yet C t ), which is the internal variable. To this end, we use

the procedure from Eqs. (5) and (27) to obtain the equality: 

˙ C t = 2 F T t d t F t = 2 F T t 
˙ ζ

Z 

D 

|| Z 

D || F t = 2 

˙ ζ F T t 

( P − K ) D 

|| ( P − K ) D || F t . (28) 

In order to facilitate the expression (28) , let us first investigate F T t ( P − K ) F t to obtain (see Eq. (A.6) in Appendix): 

F T t ( P − K ) F t = F T t P F t − F T t K F t = Y C t , (29) 

where the non-symmetric stress like tensor Y was introduced as: 

Y = C S − C t X . (30) 

Now, the term F T t ( P − K ) D F t can be manipulated to obtain (see Eq. (A.7) in Appendix): 

F T t ( P − K ) D F t = Y 

D C t , (31) 

that finally leads to: 

Z 

D = ( P − K ) 
D = F −T 

t Y 

D F T t . (32) 

Taking advantage of the symmetry of Y D C t , the norm || ( P − K ) D || is (see Eq. (A.8) in Appendix): 

‖ Z 

D ‖ = ‖ ( P − K ) 
D ‖ = ‖ F −T 

t Y 

D F T t ‖ = 

√ 

Y 

D : Y 

D T � = ‖ Y 

D ‖ . (33) 

Therefore, in the view of the above, the evolution Eq. (28) for ˙ C t can be written as: 

˙ C t = 2 

˙ ζ
Y 

D √ 

Y 

D : Y 

D T 
C t = 2 

˙ ζ A C t , (34) 
6 
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from where the definition of the non-symmetric tensor A is obvious. The transformation function (26) and Kuhn-Tucker 

conditions (24) can also be rewritten in terms of Y as: 

f ( Y ) = 

√ 

Y 

D : Y 

D T − R, (35) 

f ( Y ) ≤ 0 , ˙ ζ ≥ 0 , ˙ ζ f ( Y ) = 0 . (36) 

The temperature effects in the material are linked with the back stress X and therefore with the tensor N , see Eq. (19) ,

which is the consequence of the choice for the transformation part of the free energy (9) . The temperature effects should

also be taken into account in the elastic case; however, N is undefined for E t = 0 , which calls for an approximation of

N for the elastic case. To this end, we can consider Eq. (34) during nucleation (i.e., at beginning of the forward phase

transformation), which yields (assuming X = 0 ) 

˙ E t = 

˙ ζ
( C S el ) 

D √ 

( C S el ) D : ( C S el ) D 
T 
, (37) 

which indicates that during nucleation E t evolves in the direction of ( C S el ) 
D . Here, S el = S ( C t = 1 ) . Following [36] , we adopt

the direction (37) for all the elastic states. Thus, N is redefined for computational purposes as: 

N = 

{
( C S el ) 

D 

|| ( C S el ) D || if || E t || = 0 

E t || E t || if || E t || � = 0 

. (38) 

2.2. Discrete framework 

In the finite-element inelasticity, the solution in time is advanced through a sequence of discrete time points, 

t 0 , ..., t n , t n +1 , ..., t end . Because of the single-step integration method, it suffices to focus on the generic increment from t n 
to t n +1 . In our case, the central problem is: given the values of the state variables at t n , i.e., C (t n ) = C n and C t (t n ) = C t,n ,

find their (converged) values at t n +1 , i.e. C n +1 and C t,n +1 , by taking into account the constraint (12) . To that end, the implicit

methods to solve the evolution equation for C t,n +1 and the equilibrium equations for C n +1 are combined with the Newton- 

Raphson iterative method. The operator-split method is used to simplify the computation of the central problem. The update 

of C t,n +1 for a given value of C (i ) 
n +1 

is followed by the update of the latter for the given value of the former. 

The update of C t,n +1 takes place at Gauss integration points, while the update of C (i ) 
n +1 

requires a consistent tangent 

operator and an assembly of the finite-element contributions into a global, non-linear system of equations, with the nodal 

generalized displacements as the unknowns. The index (i ) denotes an iteration related to the global system. 

2.2.1. Computations at the Gauss point 

To integrate the evolution Eq. (34) , we use the exponential mapping approximation, see, e.g., [68] , which algorithmi-

cally conserves the inelastic volume (i.e., preserves det C t = det F t = 1 ) as required by the SMA model. For a given system of

the first-order differential equations ˙ y = G ( y ) y , the exponential approximation leads to y n +1 = exp ((t n +1 − t n ) G n +1 ) y n . By

applying this formula to Eq. (34) , we obtain: 

C t,n +1 = exp (2 ζn +1 A 

(i ) 
n +1 

) C t,n , (39) 

where ζn +1 = (t n +1 − t n ) ˙ ζ . The index (i ) indicates that the current iterative value for C (i ) 
n +1 

(which is the input for the Gauss-

point update) is used to compute A 

(i ) 
n +1 

. By using the relations exp ( A ) −1 = exp (−A ) and exp ( A ) T = exp ( A 

T ) , and the sym-

metry of C t , we can replace Eq. (39) with 

C −1 
t,n +1 = exp 

(
−2 ζn +1 A 

( i ) , T 
n +1 

)
C −1 

t,n . (40) 

We compute the asymmetric matrix exponent in Eq. (40) as proposed in [69,70] . 

A Gauss-point update starts with the evaluation of the trial state, which is obtained by keeping the transformation flow 

frozen, i.e., C tr 
t,n +1 = C t,n . With these values and given C (i ) 

n +1 
, the trial stresses S tr 

n +1 and Y tr 
n +1 are computed. The trial state is a

natural way to check the loading/unloading conditions. The elastic loading, unloading (or neutral loading) are simply verified 

if the nucleation/completion criterion (given below) during the trial state is satisfied, which enforces ζ tr 
n +1 

= 0 . In that case,

the step is elastic. In the opposite case, inelastic loading is the result, and we need to compute the updated values of C t,n +1 

and the parameters ζn +1 and γn +1 , which will enforce the consistency. The computation of the admissible state variables is 

given in terms of a set of non-linear equations with C t,n +1 , ζn +1 and γn +1 as the unknowns. 

For the inelastic step, there are two possibilities: the unsaturated state where || E t || < ε L , and the saturated state where

|| E t || = ε L . As a consequence, two sets of equations are generated. For the unsaturated state, the following system (labelled

hereinafter as PT1) 

R C t ,n +1 = C −1 
t,n +1 − exp 

(
−2 ζn +1 A 

( i ) , T 
n +1 

)
C −1 

t,n = 0 , (41) 
7 



L. Porenta, M. Lavren ̌ci ̌c, J. Dujc et al. Commun Nonlinear Sci Numer Simulat 101 (2021) 105897 

 

 

 

 

 

 

 

R ζ ,n +1 = 

√ 

Y 

D 
n +1 : Y 

D,T 
n +1 − R = 0 , (42) 

R γ ,n +1 = γn +1 = 0 , (43) 

needs to be solved, where the last equation is simply the enforcement of the parameter γn +1 to 0. For the saturated state,

Eqs. (41) and (42) remain the same, while Eq. (43) is replaced with 

R γ ,n +1 = || E t,n +1 || − ε L = 0 . (44) 

This set of equations is labelled hereinafter as PT2. Let us write PT1 and PT2 in a more compact form as: 

Q n +1 = 

{
R C t ,n +1 , 11 , R C t ,n +1 , 22 , R C t ,n +1 , 33 , R C t ,n +1 , 12 , R C t ,n +1 , 13 , R C t ,n +1 , 23 , R ζ ,n +1 , R γ ,n +1 

}
, (45) 

and the vector of unknowns as 

h n +1 = 

{
C −1 

t,n +1 , 11 
, C −1 

t,n +1 , 22 
, C −1 

t,n +1 , 33 
, C −1 

t,n +1 , 12 
, C −1 

t,n +1 , 13 
, C −1 

t,n +1 , 23 
, ζn +1 , γn +1 

}
. (46) 

The local Newton-Raphson method (with (k ) denoting an iteration) is used to solve PT1 and PT2 as: (
∂ Q n +1 

h n +1 

)( k ) 

�h 

( k ) 
n +1 

= −Q 

( k ) 
n +1 

, (47) 

with the update 

h 

( k +1 ) 
n +1 

= h 

( k ) 
n +1 

+ �h 

( k ) 
n +1 

, (48) 

and repeated iterations until the convergence || �h 

(k ) 
n +1 

|| < tol is reached, with tol = 10 −8 for the numerical examples pre-

sented below. 

The PT1 system (41) - (43) handles the transitions between the elastic and transformation steps, which are nucleation (i.e., 

|| E t,n || = 0 and || E t,n +1 || > 0 ) and completion (i.e., || E t,n || > 0 and || E t,n +1 || = 0 ). For these steps, the tensor N is defined as

given in Eq. (38) , in accordance with the proposal in [36] . Therefore, N n +1 and Y D n +1 are computed as: 

N n +1 = 

˙ E t,n +1 

|| ̇ E t,n +1 || = 

( C (i ) 
n +1 

S el,n +1 ) 
D 

|| ( C (i ) 
n +1 

S el,n +1 ) D || 
, (49) 

Y 

D 
n +1 = ( C (i ) 

n +1 
S el,n +1 − τM 

N n +1 ) 
D 

= ( C (i ) 
n +1 

S el,n +1 ) 
D − τM 

( C (i ) 
n +1 

S el,n +1 ) 
D √ 

( C (i ) 
n +1 

S el,n +1 ) D : ( C 
(i ) S el,n +1 ) D ︸ ︷︷ ︸ 

B n +1 

= ( C (i ) 
n +1 

S el,n +1 ) 
D 
(

1 − τM 

B n +1 

)
︸ ︷︷ ︸ 

k τ

. (50) 

The trial value f tr of the transformation function (35) , which is computed with Eq. (50) , the primal feasibility Kuhn-Tucker

condition, and k τ > 0 give the following nucleation condition (NC): 

f tr = 

√ 

Y 

D 
n +1 : 

(
Y 

D 
n +1 

)T − R = k τ B n +1 − R 

= B n +1 − τM 

− R ≤ 0 ⇒ B n +1 ≤ τM 

+ R. (51) 

When the condition (51) is violated, the transition from the elastic to the transformation state takes place in the current

step. Similarly, with k τ < 0 , the completion condition (CC) is obtained: 

f tr = 

√ 

Y 

D 
el,n +1 : 

(
Y 

D 
el,n +1 

)T − R = −k τ B n +1 − R 

= −B n +1 + τM 

− R ≤ 0 ⇒ B n +1 ≤ τM 

− R. (52) 

When the condition (52) is conformed, the transition from the transformation to the elastic state takes place. We note 

that the left-hand side of the final equations in (51) and (52) is always positive, as is the right-hand side of the NC in the

inequality (51) . However, the right-hand side of the CC in Eq. (52) can be negative for τ < R , which, however, only occurs

when not dealing with a superelastic regime. 
8 
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Fig. 3. Algorithm for solving local systems at the Gauss point. 

 

 

 

 

 

 

2.2.2. Solving nonlinear systems at the Gauss point 

It is suggested in [36] that PT1 is always solved first for an inelastic step. If the PT1 solution, labelled as h 

PT1 
n +1 , is inad-

missible because of the violation of condition (12) , it is suggested to proceed by PT2 and compute h 

PT2 
n +1 with h 

PT1 
n +1 as the

initial guess. It is our experience, however, that this procedure does not always work well. 

Our numerical experiments show that much better convergence properties are obtained for the inelastic step using the 

algorithm presented in Fig. 3 . It has four options: (i) For γn = 0 , PT1 is solved first (with h n as the initial guess). (ii) If the

PT1 solution violates the condition (12) , i.e., if || E t,n +1 || > ε L is computed, it proceeds with PT2 and takes h 

PT1 
n +1 as the initial

guess. (iii) For γn > 0 , PT2 is solved first, however, the 7th component of the initial guess h n , i.e., ζn , is multiplied by a factor

k . Our numerical tests suggest that k = 2 is an effective choice. (iv) If the PT2 solution violates the condition (20) , i.e., if it

computes γn +1 < 0 , we proceed with PT1 and the modified initial guess h n that enforces γn = 0 . 

Implementation of the line-search method, which prevents too large increments �h 

(k ) in Eq. (47) , also improves consid- 

erably the convergence properties. The line search introduces the parameter αLS that controls the size of the increment as: 

h 

(k +1) 
n +1 = h 

(k ) 
n +1 + αLS �h 

(k ) 
n +1 , (53) 
9 
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where 0 < αLS ≤ 1 . Usually, see [41,71] , α(1) 
LS 

= 1 at the beginning of each iteration. If the inequality 

|| Q 

(k +1) 
n +1 

|| > || Q 

(k ) 
n +1 

|| (54) 

is computed, αLS is reduced by a factor 0 < β < 1 (usually β = 0 . 5 ) as α( j+1) 
LS 

= β α( j) 
LS 

, where ( j) indicates iterations of the

line search loop. The loop iterates as long as the condition (54) holds. By lowering the norm of Q n +1 , the convergence is

improved in each iteration of the local Newton-Raphson loop, which, however, might require a large number of iterations. 

For the saturated state, the largest contribution to || �h 

(k ) 
n +1 

|| is the change of the parameter γ . Therefore, it seems reasonable

at first glance to define αLS with respect to the increment �γ . However, γ → ∞ during loading (and γ → 0 at unloading)

makes the limitation of || �h 

(k ) 
n +1 

|| troublesome. A better alternative is to define a limit value for the Lagrange multiplier

ζ > 0 and relate it with αLS as 

αLS = 

{
ζlimit 

ζ
< 1 if ζ > ζlimit 

1 if ζ ≤ ζlimit 

. (55) 

The choice (55) does not guarantee descending in each local Newton-Raphson iteration because the inequality (54) might 

still hold in some cases; however, exceeding is small. Such a line-search procedure brings three major advantages. (i) The 

line-search iteration loop with αLS updating is omitted. Because αLS is calculated only once (if necessary) the convergence 

is faster. (ii) the evaluation of the inequality (54) is skipped. (iii) The allowed exceeding prevents increments that are too

small || �h 

(k ) 
n +1 

|| . 
3. Seven-parameter shell model and finite-element formulations 

We briefly present a 7-p finite-rotation-shell model. For more details we refer to, e.g., [62,72–74] . The extensible-director 

kinematic hypothesis is assumed, along with the quadratic through-the-thickness variation of displacements. We adopt the 

standard notation for the indices: small Greek letters for indices from 1 , 2 and small Latin letters for indices from 1 , 2 , 3 . 

3.1. 7-p shell model 

The shell is embedded in 3D space with a fixed orthonormal basis { e i } . It is described as a surface with an extensible-

director field, with the position vector to the material point in the initial configuration given as: 

X 

(
ξ 1 , ξ 2 , ξ 3 

)
= ϕ 0 

(
ξ 1 , ξ 2 

)
+ ξ 3 D 

(
ξ 1 , ξ 2 

)
, ξ 3 ∈ [ −h/ 2 , h/ 2 ] , 

(
ξ 1 , ξ 2 

)
∈ A , ‖ 

D ‖ 

= 1 , (56) 

where ξ i are the convected curvilinear coordinates. Hereinafter, we will omit writing the functions’ and functionals’ argu- 

ments for brevity. Thus, ϕ 0 describes the shell mid-surface M , D is the normal-to-the- M vector field of unit length that

is called the shell director, h is the initial shell thickness, and A is the domain for the mid-surface parametrization. The

position vector to the material point in the deformed (current) configuration is assumed to be: 

x = ϕ 0 + u ︸ ︷︷ ︸ 
ϕ 

+ ξ 3 λa ︸︷︷︸ 
d 

+ 

(
ξ 3 
)2 

q a ︸︷︷︸ 
f 

, ‖ 

a ‖ 

= 1 , 
(57) 

where u is the mid-surface displacement vector field, λ is the scalar through-the-thickness-stretching field, and q is the 

hierarchical scalar field related with the quadratic variation of displacements in the through-the-thickness direction. More- 

over, a is the rotated shell director field in the deformed configuration, see, e.g., [75–77] for details. With (56) and (57) , the

covariant base vectors for the initial and deformed configurations are 

G α = 

∂ X 

∂ξα
= ϕ 0 ,α + ξ 3 D ,α, G 3 = 

∂ X 

∂ξ 3 
= D , 

g α = 

∂ x 

∂ξα
= ϕ ,α + ξ 3 d ,α + 

(
ξ 3 
)2 

f ,α, g 3 = 

∂ x 

∂ξ 3 
= d + 2 ξ 3 f , (58) 

where d ,α = λ,αa + λa ,α and f ,α = q ,αa + q a ,α . The dual base vectors G 

i are defined through the orthogonal condition G 

i ·
G j = δi 

j 
, where δi 

j 
is the Kronecker delta symbol. The Green-Lagrange strain tensor for the considered shell model is defined 

as: 

Ě = 

1 

2 

(
g i · g j − G i · G j 

)
G 

i 
� G 

j = Ě ij G 

i 
� G 

j 
, (59) 

with the covariant components of the strain tensor given as functions of ξ 3 , see [73] : 

Ě i j = H i j + ξ 3 K i j + 

(
ξ 3 
)2 

L i j + 

(
ξ 3 
)3 

M i j + 

(
ξ 3 
)4 

N i j . (60) 

Following [73] , we truncate (60) after the quadratic term, thus introducing the reduction 

Ě ij → E ij = H ij + ξ 3 K ij + 

(
ξ 3 
)2 

L ij . (61) 
10 
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The explicit forms of the covariant components of the reduced strain tensor E = E i j G 

i 
� G 

j are: 

H αβ = 

1 

2 

(
ϕ ,α · ϕ ,β − ϕ 0 ,α · ϕ 0 ,β

)
, H α3 = 

1 

2 

( ϕ ,α · d − ϕ 0 ,α · D ︸ ︷︷ ︸ 
0 

) , H 33 = 

1 

2 

( d · d − D · D ) = 

1 

2 

(
λ

2 − 1 

)
, (62) 

K αβ = 

1 

2 

(
ϕ ,α · d ,β + ϕ ,β · d ,α − ϕ 0 ,α · D ,β − ϕ 0 ,β · D ,α

)
, 

K α3 = 

1 

2 

( d ,α · d + 2 ϕ ,α · f − D ,α · D ︸ ︷︷ ︸ 
0 

) , K 33 = 

1 

2 

(4 f · d ) = 2 f · d = 2 q λ, (63) 

L αβ = 

1 

2 

(
d ,α · d ,β + ϕ ,α · f ,β + ϕ ,β · f ,α − D ,α · D ,β

)
, 

L α3 = 

1 

2 

(
2 d ,α · f + f ,α · d 

)
, L 33 = 

1 

2 

(4 f · f ) = 2 f · f = 2 q 2 . (64) 

We note that in the computer code the covariant components (62) –(64) are transformed to the Cartesian components using

the local Cartesian basis defined for each integration point. 

The weak form of the equilibrium equations at time t n +1 is (index n + 1 is omitted hereinafter for brevity): 

G ( �, C t , δ�) = 

∫ 
M 

∫ h/ 2 

−h/ 2 

δE ( �, δ�) : S ( E ( �) , C t ) dV − G ext ( δ�) = 0 , (65) 

where � = { u , a , λ, q } is the set of unknown functions called generalized displacements, δ� = 

[
δu , δa , δλ, δq 

]T 
is the vector

of admissible variations of �, and δE = ∂ E / ∂� · δ� = 

d 
dε [ E ( � + εδ�) ] ε=0 is the variation of the reduced strain tensor. 

After the spatial discretization of the mid-surface M with n el non-overlapping finite elements, such that M ≈⋃ n el 
e =1 

A e , 

and after using the appropriate interpolation for generalized displacements and their admissible variations, the functional 

(65) becomes an assembly of the finite-element contributions, with the mesh-related nodal values for generalized displace- 

ments and the Gauss-point-related values for the transformation tensor C t as the unknowns: 

G = A 

n el 

e =1 

⎛ ⎝ G 

e 
int ( �

e , C t , δ�
e ) − G 

e 
ext 

(
δ�e 
)︸ ︷︷ ︸ 

=0 

⎞ ⎠ = 0 . (66) 

Here, A denotes the finite-element-assembly operator, e.g., [67] , and G 

e 
int 

and G 

e 
ext denote the element’s approximation of 

the first and second terms on the right-hand side of Eq. (65) , respectively: 

G 

e = 

∫ 
A e 

∫ h/ 2 

−h/ 2 

δE ( �e , δ�e ) : S ( E ( �e ) , C t ) dV − G 

e 
ext 

(
δ�e 
)

= 0 . (67) 

The current values of the stress tensor are obtained using the algorithm presented in Section 2.2 , which is one of the two

steps of the operator-split method. For the other step, where the solution A 

n el 
e =1 

�e is computed for a given loading, the

linearization of (67) is needed, which can be written as Lin ( G 

e ) = G 

e + �G 

e , where 

�G 

e = 

∫ 
A e 

∫ h/ 2 

−h/ 2 
( δE : C �E + �( δE ) : S ) dV . (68) 

Here, C = ∂ S / ∂ E is the fourth-order tensor, called the consistent inelastic tangent operator, which is computed already in

the first step, and 

�E = 

∂ E 

∂ �e · ��e 
, δE = 

∂ E 

∂ �e · δ�e 
, �( δE ) = 

∂ ( δE ) 

∂ �e · ��e 
. (69) 

3.2. Three 7-p quadrilateral finite-element formulations 

We describe the assumed natural strain (ANS) and the enhanced assumed strain (EAS) interpolations that are applied for 

three 7-p quadrilateral finite elements used to compute the numerical examples. 

3.2.1. Basic interpolations 

The initial mid-surface and the initial shell director over the quadrilateral 7-p shell finite element are interpolated as 

ϕ 

e 
0 = 

4 ∑ 

a =1 

N a ( ξ , η) ϕ 0 a , D 

e = 

4 ∑ 

a =1 

N a ( ξ , η) D a , ‖ 

D a ‖ 

= 1 , (70) 
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Fig. 4. 7-p shell quadrilateral finite element with ANS points. 

 

 

 

 

 

 

where ( ·) a are the nodal values, D a is the exact normal to the shell mid-surface at node a , and ξ ∈ [ −1 , 1] and η ∈ [ −1 , 1]

are the isoparametric coordinates that parametrize element’s mid-surface and approximate ξ 1 and ξ 2 over A e . Moreover, 

N a (ξ , η) are bilinear Lagrange interpolation functions defined over the bi-unit square [ −1 , 1] × [ −1 , 1] . In order to have

zero values of all the kinematic variables for the initial configuration, we introduce an auxiliary kinematic variable ̃  λ as ˜ λ = 1 − λ. (71) 

The deformed configuration of the element is approximated with: 

u 

e ( ξ , η) = 

n en ∑ 

a =1 

N a ( ξ , η) u a , a 

e = 

n en ∑ 

a =1 

N a ( ξ , η) a a , (72) 

˜ λe = 

4 ∑ 

a =1 

N a ( ξ , η) ̃  λa , q e = 

4 ∑ 

a =1 

N a ( ξ , η) q a . (73) 

Note that the interpolations for the shell director (71) and (72) demand applying the rotations and rotational parameters 

only at the nodes of the finite element. 

3.2.2. ANS enhancements 

To avoid the transverse shear, the membrane, and the through-the-thickness lockings, and to reduce the sensitivity of 

the quadrilateral shell element to geometric distortion, the ANS interpolations are used. 

For the membrane covariant components of the strain tensor, we adopt the ANS interpolation proposed by Kulikov and 

Plotnikova [63] for the five-parameter (5-p) quadrilateral shell element: 

E ANS 
11 = 

(
−1 + η2 

) (
a B E 

B 
11 + a D E 

D 
11 + a E E 

E 
12 

)
+ 

1 

2 

(
1 − 2 a A − η + 2 a A η

2 
)

E A 11 + 

1 

2 

(
1 − 2 a C + η + 2 a C η

2 
)

E C 11 , (74) 

E ANS 
22 = 

(
−1 + ξ 2 

) (
a A E 

A 
22 + a C E 

C 
22 + a E E 

E 
12 

)
+ 

1 

2 

(
1 − 2 a B + ξ + 2 a B ξ

2 
)

E B 22 + 

1 

2 

(
1 − 2 a D − ξ + 2 a D ξ

2 
)

E D 22 , (75) 

E ANS 
12 = 

1 
4 ( −ξ + 4 a A ξη) E A 11 + 

1 
4 ( ξ + 4 a C ξη) E C 11 + 

1 
4 ( η + 4 a B ξ η) E B 22 + 

+ 

1 
4 ( −η + 4 a D ξη) E D 22 + ( 1 + a E ξ η) E E 12 , 

(76) 

where A, B, C, D and E define the points where the strains are evaluated with Eqs. (61) –(64) , see Fig. 4 . The a factors

that appear in the above expressions measure the mesh distortion, e.g. [63–66] . For our element called 3ANS, they were

computed for the last converged configuration [65] , and for our element called EAS, they were computed for the initial

configuration. 

For the transverse shear covariant components of the strain tensor, we adopt the ANS interpolation proposed by Dvorkin 

and Bathe [61] for the quadrilateral based on the 5-p shell model: 

E ANS 
13 = 

1 

2 

(
( 1 −η) E A 13 + ( 1+ η) E C 13 

)
, E ANS 

23 = 

1 

2 

(
( 1 −ξ ) E D 23 + ( 1+ ξ ) E B 23 

)
. (77) 

Equations (61) –(64) are used to compute the transverse shear strains at the collocation points A, B, C and D, see Fig. 4 .

Finally, for the transverse normal covariant component of the strain tensor, we adopt the ANS interpolation proposed by 

Betsch and Stein [62] : 

E ANS 
13 = 

4 ∑ 

a =1 

N a ( ξ , η) E 33 a . (78) 
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Table 1 

Used finite elements. 

FE H αβ H α3 H 33 K αβ K α3 K 33 L αβ L α3 L 33 

2ANS Disp. ANS ANS Disp. ANS ANS Disp. ANS ANS 

3ANS ANS ANS ANS ANS ANS ANS ANS ANS ANS 

EAS ANS & EAS (5) ANS ANS & EAS (3) ANS & EAS (5) ANS ANS & EAS (3) ANS & EAS (5) ANS ANS 

 

 

 

 

 

 

 

By using the above ANS enhancements, the strain tensor changes as E → E 

ANS , which is reflected in the element’s weak

form (67) simply by the replacement of E with E 

ANS . 

3.2.3. EAS enhancements 

The performance of the element can also be improved by application of the EAS concept, which relies on the enhance-

ment of the covariant components of the strain tensor by adding the enhancing components. The in-plane covariant compo- 

nents of the strain tensor, H αβ , K αβ and L αβ , can be additively enhanced by covariant components of the enhancing strain

tensor denoted as ˜ H αβ , ˜ K αβ and 

˜ L αβ . The latter can be collected in vectors as 

˜ H αβ = 

[
˜ H 11 , ˜ H 22 , 2 ̃

 H 12 

]T 
, ˜ K αβ = 

[
˜ K 11 , ˜ K 22 , 2 ̃

 K 12 

]T 
, ˜ L αβ = 

[
˜ L 11 , ̃  L 22 , 2 ̃

 L 12 

]T 
, (79) 

and interpolated over the element as ˜ H αβ = Γ IP ˜ αH αβ
, ˜ K αβ = Γ IP ˜ αK αβ

, ˜ L αβ = Γ IP ˜ αL αβ
, (80) 

where the interpolation was chosen based on experience with 5-p shell quadrilaterals, e.g., [65,66,78] , as 

Γ IP = 

[ 

ξ 0 0 0 0 

0 η 0 0 0 

0 0 ξ η ξη

] 

. (81) 

In (80) , ˜ αH αβ
, ˜ αK αβ

and 

˜ αL αβ
are vectors of the additional EAS parameters of the element, with each vector having five

parameters. The EAS enhancement of the in-plane covariant strains can therefore be written as ˜ E αβ = ̃

 H αβ + ξ 3 ˜ K αβ + (
ξ 3 
)2 ˜ L αβ . Also, the through-the-thickness normal covariant components of the strain tensor, H 33 and K 33 , can be additively 

enhanced by the EAS strains. We use the following interpolations 

˜ H 33 = �T H ˜ αH 33 
, ˜ K 33 = 

j C 
j G 

�T H ˜ αK 33 
, (82) 

where 

�TH = 

[
ξ η ξη

]
, (83) 

and the vectors ̃  αH 33 
and ̃

 αK 33 
consist of three additional EAS parameters each. We note that in the computations, the com- 

ponents of the strain and stress tensors with respect to the local Cartesian basis are used in the Gauss points. The trans-

formation of the covariant generalized-displacement-based, ANS, and EAS strain components is performed in the standard 

manner, see, e.g., [66] . 

The variational framework for the EAS enhancements is a modified Hu-Washizu functional, which is without the stress 

tensor (e.g., [78,79] ), and with the strain tensor defined as E 

EAS = E + ̃

 E . Its stationary point provides two equations: 

G 

e,EAS, 1 = 

∫ 
A e 

∫ h/ 2 

−h/ 2 

δE ( �e , δ�e ) : 
∂ ˜ ψ 

∂ E 

EAS 

(
E ( �e ) + ̃

 E , C t 
)
dV − G 

e 
ext 

(
δ�e 
)

= 0 , (84) 

G 

e,EAS, 2 = 

∫ 
A e 

∫ h/ 2 

−h/ 2 

δ˜ E : 
∂ ˜ ψ 

∂ E 

EAS 

(
E ( �e ) + ̃

 E , C t 
)
dV = 0 , (85) 

among which (85) is used for condensation of the additional EAS parameters at the element level. As shown for the 5-p shell

model quadrilateral [65,80,81] , combining the ANS and EAS concepts as E 

EAS∗ = E 

ANS + ̃

 E leads to very efficient formulations. 

In that case, (84) and (85) change to 

G 

e, EAS∗, 1 = 

∫ 
A e 

∫ h/ 2 

−h/ 2 

δE 

ANS ( �e , δ�e ) : 
∂ ˜ ψ 

∂ E 

EAS∗
(
E 

ANS ( �e ) + ̃

 E , C t 
)
dV − G 

e 
ext 

(
δ�e 
)

= 0 , (86) 

G 

e,EAS∗, 2 = 

∫ 
A e 

∫ h/ 2 

−h/ 2 

δ˜ E : 
∂ ˜ ψ 

∂ E 

EAS∗
(
E 

ANS ( �e ) + ̃

 E , C t 
)
dV = 0 . (87) 

The interpolations for the three finite elements applied in the section with numerical examples are listed in Table 1 ,

where “Disp.” stands for standard, generalized-displacement-based interpolation, and the number in parenthesis denotes 

the number of EAS parameters in the EAS formulations. 
13 
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Fig. 5. Square element in tension: geometry, boundary conditions and loading (left) and superelastic response at the Gauss point (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Numerical examples 

The computer codes for the above-described material and shell models were produced using the finite-element code 

generator AceGen, see [69,70] . They were implemented into the finite-element computer code AceFEM [82] that was used 

to compute the numerical examples given below. Three sets of material parameters are used: Set 1, see (88) , is taken from

Arghavani et al. [36] , Set 2, see (89) , is taken from Evangelista et al. [35] , and Set 3, see (90) , is calibrated to match the

experiment in [83] . 

Set 1: E = 51700 MPa , ν = 0 . 3 , h = 750 MPa , R = 140 MPa , 
ε L = 0 . 075 , β = 5 . 6 MPa/ 

◦
C , T 0 = −25 

◦C, 
(88) 

Set 2: E = 530 0 0 MPa , ν = 0 . 36 , h = 10 0 0 MPa , R = 50 MPa , 
ε L = 0 . 04 , β = 2 . 1 MPa/ 

◦
C , T 0 = −50 . 15 

◦C, 
(89) 

Set 3: E = 40 0 0 0 MPa , ν = 0 . 33 , h = 270 MPa , R = 82 . 5 MPa , 
ε L = 0 . 059 , β = 5 . 6 MPa/ 

◦
C , T 0 = −7 . 8 

◦C. 
(90) 

To obtain the superelastic response, the ambient temperature T is set to 37 ◦C for Set 1, to 11.85 ◦C for Set 2, and to 27.5 ◦C

for Set 3. The numerical examples were computed with all three formulations (2ANS, 3ANS and EAS) using a 2 × 2 × 3

Gaussian quadrature, i.e., with three integration points in the thickness direction. For examples with identical results for all 

formulations, the label “2ANS” is used in the figures below. Where the results are identical for the 2ANS and 3ANS, but

not for the EAS, the labels “2ANS” and “EAS” are used. The components of the second Piola-Kirchhoff stress tensor and the 

components of the Green-Lagrange strain tensor are shown when presenting the response at the integration point. 

4.1. Tension of a square element 

A square element with an edge length L = 10 mm and a thickness h = 0.01 mm is subjected to tension. The supports

are applied in such a way that the homogeneous stress state is obtained (see Fig. 5 (left)). The edge 3 is subjected to an

imposed displacement u x = u max λ, where u max = 1 mm and λ is a load multiplier. Set 1 of the material parameters is used.

Loading and unloading with a total of 320 steps is considered, with λ increasing from 0 to 1 and decreasing back to 0.

The stress-strain relation at the integration point is shown in Fig. 5 (right). Comparing the curve with that from Arghavani

et al. [36] (labelled as “Ref.”), only a small discrepancy is observed for large stresses due to the use of different strain-

energy functions. Namely, we use the Neo-Hokean strain-energy function, while in [36] the Saint-Venant Kirchoff model 

was applied. Moreover, the reference curve from Arghavani et al. [36] was obtained by directly solving local equations that 

appear at the Gauss point for the plane-stress case, while our results are obtained by applying a load to a single finite

element. Characteristic points are marked on the curve to show how the variables ζ and γ are changing during loading and 

unloading. In the beginning, the response is elastic, therefore ζ = γ = 0 . During the forward martensitic transformation, the 

PT1 system is being solved and ζ is increasing. When the transformation is completed, the saturated state is present, and 

therefore the PT2 system gives an admissible converged solution with the constant ζ and an increasing γ . The higher the 

load, the greater the value for γ . At the beginning of the unloading, the first few steps are elastic, because the Kuhn-Tucker

condition for the limit function is not violated ( f tr < 0 ). With further unloading, ζ remains constant and γ is decreasing

towards 0. At the beginning of the reverse transformation, γ = 0 and the unsaturated state is present. During the reverse

transformation, ζ is increasing, while γ remains at 0 and the PT1 system is being solved. After completion of the reverse 

transformation, the elastic response is obtained, i.e., ζ and γ are constant. 
14 
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Fig. 6. Square element under shear: geometry, boundary conditions, loading (left) and superelastic response at Gauss point (right). 

Fig. 7. Square wall: geometry, mesh, boundary conditions and loading (left) and change of multipliers (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Shear of a square element 

A square element with the edge length L = 10 mm and thickness h = 0.01 mm is subjected to a shear load, see Fig. 6

(left). The displacement u x = λ u max is imposed on edge 2, where u max = 1.5 mm and λ is the load multiplier. Loading and

unloading in a total of 80 steps is considered by increasing λ from 0 to 1 and decreasing it back to 0. The Set 1 of the

material parameters is used. With the boundary conditions shown in Fig. 6 (left), a homogeneous stress state is obtained.

We note that for a mesh of several elements, this is no more the case, because this kind of loading does not produce a pure

shear state in a nonlinear neo-Hookean solid. Nevertheless, we use a single-element test in order to compare our results 

with the pure shear test reported in [36] . We can see from Fig. 6 (right) that our curve matches perfectly with the curve

“Ref.” from Arghavani et al. [36] . It is worth mentioning that the reference curve is obtained by directly solving the local

equations that appear at the Gauss point for the pure-shear case, while our results are obtained by applying a load on a

single finite element. 

4.3. Square wall in tension and compression 

A square wall with the edge length L = 10 mm and thickness h = 0.01 mm is subjected to non-proportional loading. The

wall is supported along the edges 1 and 2 in such a way that a homogeneous stress state is obtained (see Fig. 7 (left)). A

structured mesh of 5 × 5 elements is used, along with the Set 1 of material parameters. 

The loads are q 1 = λ1 q 1 ,max and q 2 = λ2 q 2 ,max , where λ1 and λ2 are the load multipliers, and q 1 ,max = 7 . 524 N/mm and

q 2 ,max = 7 . 559 N/mm. The values of the load multipliers are adjusted load-step-wise, as shown in Fig. 7 (right), so that the

butterfly-like stress pattern from Fig. 8 (left) is obtained, with the maximum stresses S 11 = S 22 = 700 MPa. This allows us

to compare our results with those from Arghavani et al. [36] in Fig. 8 (right), where the normal in-plane strains are shown.

Our results fit well with the reference results, which were obtained with the Gauss-point algorithm for the butterfly-like 

stress control shown in Fig. 8 (left). 

4.4. Beam in tension 

A straight beam of length L = 100 mm, width w = 20 mm, and thickness h = 1 mm is subjected on edge 2, see Fig. 9 , to

a tensile load q 1 = q λ, where q = 400 N/mm and λ is the load multiplier (after [35] ). The mesh is 10 × 1 elements, and the

Set 2 material parameters are used. The loading and unloading is considered, with λ increasing from 0 to 1 and decreasing

back to 0. Four cases of boundary conditions are studied. The first three cases have the edge 1 supported as u x = u y = u z = 0 .
15 
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Fig. 8. Square wall: computed stress pattern (left) and superelastic response at the Gauss point (right). 

Fig. 9. Beam in tension: geometry, mesh, loading and boundary conditions (C3). 

Fig. 10. Beam in tension: superelastic response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, for the first case (C1), the thickness change (i.e., the 6th and the 7th nodal degrees of freedom) is restricted to

zero over the whole mesh. For the second case (C2), the thickness change is restricted to zero only on edge 1, while for the

third case (C3), no additional boundary conditions are applied. For the fourth case (C4), the point with coordinates (0,0,0) 

is restrained as u x = u y = u z = 0 , and the rest of the edge 1 is restrained as u x = u z = 0 (giving a homogeneous stress state).

Thus, C1 is the plane-strain case, and C3 and C4 are the plane-stress cases. 

The results show that for the plane-strain case C1, E 33 = 0 for 2ANS and 3ANS, and E 33 ≈ 10 −3 for EAS. For the plane-

stress cases (C3 and C4), S 33 ≈ 0 for EAS, which, however, is not the case for 2ANS and 3ANS. For C2, the influence of

the edge support is much larger for 2ANS and 3ANS than for EAS. Figure 10 shows the axial force at edge 1 versus the

axial displacement of the point with initial coordinates (L, w, 0) . Interestingly, the difference between the computed stresses 

and strains for the three formulations reflects only slightly in the load-displacement curves for C1, C3 and C4, and it is

considerable only for C2. The curves are compared with those of Evangelista et al. [35] , who used a mesh of 10 × 1 2D

elements that were claimed as plane stress, and C3 boundary conditions. It can be observed that none of our curves matches

with that from Evangelista et al. [35] . It seems that the results from Evangelista et al. [35] are neither plane stress nor plane

strain, but, unfortunately, a description of the applied 2D element and the corresponding SMA formulation are not provided 

in [35] . Part of the difference between our results and those of [35] can be attributed to our use of the nucleation and

completion conditions, while [35] used a regularized norm for || E t || , which means that the material is treated as inelastic

from the start of the analysis. This makes a sharp transition at the beginning of the transformation (when loading) and at

the end of transformation (when unloading) in our formulations. Figure 11 shows distribution of non-zero stresses through 

the thickness of EAS element: at the near-support-point marked with P in Fig. 9 , for C3, at λ = 1, and for 3, 5 and 7

through-the-thickness integration points. 

Small values of S 33 (in the range of 10 −3 S 11 ) and S 13 (in the range of 10 −2 S 11 ) are observed, with integral of S 13 over

the thickness yielding zero. It seems that our 7-p formulations exhibit slight 3D effects (expressed by non-zero S and S 
33 13 
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Fig. 11. Through the thickness stress distribution for C3 and EAS element, at point P. 

Fig. 12. Curved beam: geometry, mesh, boundary conditions (C3), loading, and deformed mesh with || E t || for C1 at λ = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in this particular case) in regions where localized 3D effects may be expected. It also seems that such 3D effects are more

pronounced when (volume preserving) transition takes place. However, this has a negligible influence on the global (stress 

resultant) level of the response. For example, C3 and C4 load-displacement curves in Fig. 10 are practically identical, and for

C4, the only non-zero stress is S 11 . 

4.5. Curved beam 

A curved beam with thickness h = 1 mm (see Fig. 12 ) is analyzed (after [35] ) for four cases of boundary conditions (C1-

C4), wherein the first three cases are the same as those in the previous example, while for C4 the point with coordinates

( R o , 0,0) is restrained as u x = u y = u z = 0 , and the rest of the edge 1 is restrained as u y = u z = 0 . On edge 2, the line load

q 1 = q λ is applied, where q = 60 N/mm and λ is the load multiplier, which is increased from 0 to 1 and decreased back

to 0. Set 2 of the material parameters and a regular mesh with 40 elements in the circumferential and 10 elements in the

radial direction are used. 

In Fig. 12 , the amount of transformation in the middle surface is shown. Figure 13 shows the relation between the

applied force and the displacement in the −x direction of the point with the initial coordinates (−R o , 0 , 0) . The curves are

compared with those from reference [35] , where a mesh of 40 × 10 2D elements was used for a small-strain SMA, labelled

as “Ref. SS”, and for a large-strain SMA, labelled as “Ref. FS”. As for the previous example, none of our curves matches the

one from Evangelista et al. [35] , indicating again that the 2D element in [35] is neither plane stress nor plane strain. The

curves C2, C3 and C4 are similar, while the plane-strain curve C1 shows the stiffest response. For this example, there is no

significant difference between C2 and C3 (and C4), in contrast with the previous example. In general, the EAS formulation 

is softer than the 2ANS and 3ANS. 

It is worth noting that for the 2D tests presented in [36] (i.e., the first three examples), the results of our formulations

match perfectly with those from Arghavani et al. [36] . On the other hand, for the 2D tests presented in [35] (i.e., this one
17 
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Fig. 13. Curved beam: superelastic response. 

Fig. 14. Cook’s membrane: geometry, mesh, boundary conditions and loading (left) and superelastic response(right). 

Fig. 15. Cook’s membrane: initial and deformed 2ANS mesh at: (a) λ = 0.35, (b) λ = 0.45 and (c) λ = 1. 

 

 

 

 

 

 

 

 

and the previous one), the results of our formulations do not match with those from Evangelista et al. [35] . We attribute the

difference to the unknown 2D formulation in [35] . As shown in Section 4.8 for a 3D example, our results match perfectly

with those from Evangelista et al. [35] . 

4.6. Cook’s membrane 

A Cook’s membrane of length L = 48 mm and thickness h = 1 mm is considered (see Fig. 14 (left)). Edge 1 is fully

clamped, i.e., all 7 degrees of freedom are set to 0. Load q 1 = q λ is applied on edge 2, where q = 625 N/mm and λ is the

load multiplier that goes from 0 to 1 and back to 0. A regular mesh of 16 × 16 elements and Set 1 of the material parameters

are used. 

Figure 14 (right) presents the relationship between the vertical reaction force on edge 1 and the displacement in the −y

direction for the middle point on edge 2. Figure 15 shows the initial and deformed meshes, along with the transformation

strain norm || E t || for the middle surface of 2ANS. The stress state through the thickness is not homogeneous due to the

imposed boundary conditions on edge 1. Small differences between the three formulations are observable, and like previous 

examples, the EAS response is slightly softer. 
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Fig. 16. Cylindrical panel: geometry, mesh, boundary conditions and loading. 

Fig. 17. Cylindrical panel: superelastic response presented by rotation (left) and by displacements (right). 

Fig. 18. Cylindrical panel: initial and deformed 2ANS meshes and transformation for: (a) “upper” surface, (b) middle surface, and (c) “lower” surface. 

 

 

 

 

 

 

 

 

 

 

4.7. Bending of a cylindrical panel 

A cylindrical panel with radius R = 5 mm, angle θ = π/ 4 , width w = 2 mm, and thickness h = 0.5 mm is subjected

to a bending moment m 1 (see Fig. 16 ). Edge 1 is fully clamped, i.e., all 7 degrees of freedom are set to 0. Load m 1 = m λ
is applied on edge 2, where m = 300 Nmm/mm and λ is the load multiplier. A mesh with 32 elements in the bending

direction and 16 elements in width direction is used. Loading and unloading is considered, where λ is changed from 0 to

1 and decreased back to 0. Set 1 of the material parameters is used. This is a pure bending test, while all the previous

examples were pure membrane tests. 

Figure 17 (left) shows the superelastic response of the cylindrical panel by presenting the relationship between rotation 

(around −y axis) of the middle point on edge 2 and the reaction moment on edge 1. In order to show the ability of our

algorithm to find solutions for fully transformed material, the value of the applied load is high. A solution is only possible to

obtain by using the line-search method, when solving local equations at the Gauss points (see Section 2.2.2 ), with �ζlimit =
0 . 005 . Without applying the line search, the algorithm finds converged solutions only for the applied moments that are less

than 200 Nmm. The superelastic response is shown in Fig. 17 (right), where displacements in −x and −z of the middle point

on edge 2 are shown. The initial and deformed meshes for λ = 0 . 2 and λ = 1 are shown in Fig. 18 , along with the amount

of transformation. The “upper” and “lower” surfaces are located at ±0 . 5 
√ 

3 / 5 h from the middle surface. The transformation 

at the “upper” and “lower” surfaces is not completely symmetric with respect to the middle surface due to slight curvature 

deformation in the shorter direction. 
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Fig. 19. Helical spring: geometry, mesh, boundary conditions and loading (left) and loading procedure (right). 

Fig. 20. Helical spring: superelastic response (left), displacement and deformed shape with indicated transformation during the loading (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8. Helical spring 

A helical spring (see Fig. 19 (left)) of inner radius R 1 = 2 . 5 mm, outer radius R 2 = 3 . 5 mm, step s = 1 . 2566 mm, and

thickness h = 0 . 5 mm is considered after [35] . Edge 1 is fully clamped, i.e., all degrees of freedom are 0, while edge 2 is

subjected to load q 1 = q λ, where q = 4 . 14 N/mm and λ is the load multiplier. A regular mesh with 25 elements in the

circumferential and 6 elements in the radial direction is used. Following [35] , the mechanical and temperature loading are

applied in three steps, where the duration of each step is 1 unit of dimensionless pseudo-time (see Fig. 19 (right)). The

loading procedure is defined in the following way: (i) increase of λ from 0 to 1 at a constant ambient temperature of 11.85
◦C, (ii) an increase of the temperature from 11.85 ◦C to 526.85 ◦C at λ = 1 , and (iii) a decrease of the temperature back to

11.85 ◦C at λ = 1 . Set 2 of the material parameters is used. 

The relation between the average stress on edge 1, denoted as Q , and the displacement in the −z direction of the middle

point on edge 2 is shown in Fig. 20 (left). The average stress is obtained by dividing the vertical reaction force by the

cross-section area (R 2 − R 1 ) h = 0 . 5 mm 

2 . Our results are compared with those from Evangelista et al. [35] , where a mesh

of 25 × 5 × 5 8-node solid elements was used. Despite the small discrepancies, which might be because of the differences

between the solid and shell formulations, meshes, and hyperelastic functions, our curves match well with the reference 

curves. For 2ANS, the maximum displacement at the end of the first loading step is almost identical with the reference

curve, while at the end of the second step the difference in the displacements is 6.4%. The EAS formulation is softer than

the 2ANS; therefore, the maximum displacement at the end of the first loading step is higher; however, the displacement 

change during the second loading step is similar to that of the reference curve. Fig. 20 (right) shows the displacement of

the middle point on edge 2 during the loading procedure. At the end of the third step, when the temperature is back to

the initial value, the displacement caused by the temperature change is also recovered. This is also seen in Fig. 20 (right),

where the initial and deformed shapes at the end of each step for the 2ANS formulation are shown. Figure 21 presents

distribution of stresses across the helical spring at the end of step (i) for EAS element. Stresses at the levels of the three

through-the-thickness integration points are shown. 

The order of S 33 is rather high, roughly 1 / 10 of the order of other stresses. This is because the shell is not very thin,

h/R 2 = 1 / 7 , and due to slight 3D effects in more stressed part of the spring. 

4.9. Half sphere 

A half sphere of radius r = 10 mm, with a hole on top, angle θ = 2 π/ 5 , and thickness h = 0.4 mm, is subjected to 2

point forces, see Fig. 22 . 

This is a standard benchmark test for shells, because of its response that couples the membrane and bending effects. 

Double symmetry is considered; therefore, only a quarter of the half sphere is analysed by taking into account the appro-

priate symmetry boundary conditions. In order to prevent rigid-body motion, the displacement of point P with the coor- 
0 
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Fig. 21. Helical spring: Stress distribution at λ = 1 in “upper”, middle and “lower” surface (for EAS element). 

Fig. 22. Half sphere: geometry, distorted mesh ( 16 × 16 ), boundary conditions and loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dinates (r sin (π/ 10) , 0 , r cos (π/ 10)) is restrained in the z direction. At points P 1 = (r, 0 , 0) and P 2 = (0 , r, 0) , forces F x = F λ
and F y = F λ are applied, respectively, where F = 100 N and λ is the load multiplier. 

Four cases with fine and coarse meshes are considered. The first and second cases (C1 and C2) have regular and distorted

meshes with 4 × 4 elements, respectively. The third and fourth cases (C3 and C4) utilize regular and distorted meshes with

16 × 16 elements, respectively. The distorted meshes have the ratio L 1 /L 2 = 16 . Loading and unloading is considered by

increasing λ from 0 to 1 and back to 0, and Set 1 of the material parameters is used. 

Figure 23 shows the relationship between the force and the displacement of points P 1 and P 2 in the x and −y directions,

respectively. For finer meshes, the results for 2ANS and 3ANS and for both meshes are almost identical; therefore, only 

one curve is shown to represent all four analyses. Similarly, the difference between the regular and distorted finer meshes 

for the EAS are negligible. For the coarse meshes, the 3ANS results are much closer to the fine-mesh results than the 2ANS

results, while the EAS results are the closest to the fine-mesh result. For the coarse regular (R) mesh, the difference between

the 2ANS, 3ANS and EAS results is large. For the coarse distorted (D) mesh, the difference in the results between the 2AND

and 3ANS is smaller. However, the EAS results are different. This is because of the way the distortion is applied (the mesh

is finer in the vicinity of the forces). This example shows the advantage of 3ANS over 2ANS for shell problems where the

interaction between the bending and membrane effects is present. The 3ANS and EAS give much better results for coarse 

and distorted meshes. In Table 2 , u x of point P 1 and u y of point P 2 are collected for a particular load multiplier for all

elements and meshes. Figure 24 shows the initial and deformed fine regular mesh at λ = 1 . The amount of transformation

is shown as well, with the “upper” and “lower” surfaces defined in the same way, with respect to the thickness, as in

the Example 4.7 above. As expected, the transformation is not homogeneous through the thickness and a larger level of 

transformation is present in areas near the application of the forces. 

4.10. Twisted beam 

Similar to example in [84] a beam of length L = 12 mm and for 2 π twisted along its axis, with width w = 2 mm and

thickness h = 0.2 mm (see Fig. 25 (lower)) is analyzed. It has one edge clamped (i.e., all 7 degrees of freedom are 0 in this
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Fig. 23. Half sphere: force versus displacement curves. 

Table 2 

Displacements u x (point P 1 ) and u y (point P 2 ), in [ mm ] , for a particular value of load multiplier. 

Fig. 24. Half sphere: initial and deformed 2ANS mesh with indicated level of transformation for: (a) “upper” surface, (b) middle surface points and (c) 

“lower” surface. 

 

 

 

 

 

case). At the opposite edge, the axial displacement u = u max λ is imposed, where u max = 1.1 mm and λ is load multiplier.

Set 1 of material parameters is used for regular and distorted meshes, with 32 elements in longitudinal and 16 elements in

the transverse direction. For the latter mesh, the ratio r = L 1 /L 2 = 1 . 1 is applied (see Fig. 25 (upper)). For the regular mesh,

the loading and unloading are considered through the displacement control, with increasing λ from 0 to 1 and decreasing 

it back to 0 in order to obtain a superelastic response. However, for the distorted mesh, the symmetry with respect to the

beam axis is lost, which induces small geometric imperfections that trigger instability, and the arc length method [85] is
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Fig. 25. Twisted beam: geometry, boundary conditions, loading (shown on initial (gray) regular mesh), and deformed configuration (in color) for 2ANS 

(lower), initial and deformed shape (distorted mesh) with transformation of mid-surface at maximal computed displacement for 2ANS (upper). 

Fig. 26. Twisted beam: Superelastic response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

used, which does not allow the control of loading and unloading by prescribing λ, because the latter becomes unknown 

that is computed in the solution process. 

Figure 26 shows relationship between the reaction force on edge 1 and the displacement of the mid-point on edge 2,

both in the −x direction. It can be seen that for the regular mesh, the loading and unloading generate superelastic responses

without any instability. A deformed regular mesh is shown in Fig. 25 (lower) for λ = 0 . 65 , with colours indicating the

amount of transformation in the mid-surface (we can see the symmetry of the transformation with respect to the mid- 

axis). This is in contrast with the results for the distorted mesh, when buckling occurs, for the 2ANS and 3ANS elements

at approximately 0.5 mm and for the EAS element at approximately 0.4 mm. The arc-length starts with unloading at some

point, but the algorithm is not able to find much of the subsequent solution path. Figure 25 (upper) shows the deformed

distorted mesh at the maximum displacement. This example illustrates how small imperfections (induced here simply with 

a mesh distortion) generate very different results for a buckling-sensitive SMA. 

4.11. Tube in tension 

A cylinder of length L = 30 mm, mid-diameter d = 4.326 mm and thickness h = 0.348 mm is subjected to axial tension,

see Fig. 27 (left). On both edges, all degrees of freedom are set to 0, except for axial displacement at edge 2, which is

u = u max λ, where u max = 1 . 1 mm and λ is load multiplier. Loading and unloading is considered by increasing λ from 0

to 1 and back to 0. Regular mesh with 40 × 40 elements is used. The main purpose of this example is identification of

material parameters by comparing our results with experimental data from Helm and Haupt [83] , and use these parameters

to compute the next example. The calibration yielded Set 3 data given in (90) for the ambient temperature T = 27 . 5 ◦C ,

which was roughly the average temperature during the experiment. Figure 27 (right) shows our results (with Set 3 data),

experimental results [83] and numerical solution [41] with 3D solid finite element. Axial stress is σ = F /A , where F is axial

reaction force and A is initial cross section area. Axial strain is ε = �l /l , where �l is displacement difference between the

nodes initially at z = 15 mm ± 0 . 75 mm and l is the initial distance between these nodes (i.e. 1.5 mm). Some discrepancies

are present between our curves and the experiment curve (“Ref. Exp”), while differences between our curves and the curve 

from Reese and Christ [41] (“Ref. Sim”) are minor. At the beginning of the martensite transformation and at the end of the

reverse transformation our curves are non-smooth because of nucleation and completion condition. 
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Fig. 27. Tube in tension: geometry, boundary conditions, loading (left), and superelastic response (right). 

Fig. 28. Tube in tension and torsion: geometry, boundary conditions, loading (left), and load path (right). 

 

 

 

 

 

 

 

 

 

 

 

 

4.12. Tube in tension and torsion 

The cylinder from the previous example is subjected to tension and torsion, after [83] and [41] , see Fig. 28 . Edge 1 is

clamped (i.e. all degrees of freedom are 0), while edge 2 is subjected to axial stretching u z = u max λ1 followed by torsion

φz = φmax λ2 , where λ1 and λ2 are load multipliers. Torsional rotation is applied by imposing u x and u y due to φz . The

thickness change and the director rotations (i.e. 4th to 7th degrees of freedom) are set to 0 on edge 2. The u max = 0 . 903

and φmax = 0 . 722 are such that 3% normal and shear deformations are reached, with normal deformation defined as ε =
�L/L (where �L is axial displacement on edge 2) and shear deformation defined as γ / 

√ 

3 , where γ = (φz d) / (2 L ) . Loading

consists of 4 steps: (i) λ1 is increasing from 0 to 1 at λ2 = 0 , (ii) λ2 is increasing from 0 to 1 at λ1 = 1 , (iii) λ1 is decreasing

from 1 to 0 at λ2 = 1 , and (iv) λ2 is decreasing from 1 to 0 at λ1 = 0 . Regular mesh with 40 × 40 elements and Set 3

material parameters are used. 

Figure 29 (left) compares our results with experimental results [83] (“Ref. Exp”) and simulation from Reese and Christ 

[41] (“Ref. Sim”), in which 3D solid elements were used. In Fig. 29 (left), σ = F /A , where F is axial reaction force and A is

initial cross section area, and τ = (Md/ 2) / (π/ 32 (D 

4 
out − D 

4 
in 
)) , where M is torsional moment and D in and D out are the inner

and the outer diameter of the tube, respectively. The match of our curve to the experiment and the reference simulation

is acceptable, although not perfect. The main reason for the differences between the simulations (2ANS and “Ref. Sim”) 

are different constitutive equations used. However, both simulations lack the compression-tension asymmetry, which may 

be the reason for the deviations from the experiment. Another significant difference between the experiment and simula- 

tions is temperature change of the material. In [83] , temperature changes are measured during the experiments, indicating 

non-isothermal conditions, whereas in simulations isothermal loading is considered. Figure 29 (right) shows distribution of 

the transformation, which is similar as in [41] . Figure 30 compares normal and shear stress-strain curves with experiment 

[83] . Normal stress-strain curve matches well the experiment, especially in the first and the second loading step, while the
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Fig. 29. Tube in tension and torsion: superelastic response (left) and transformation of the mid-surface (right): (a) initial state, (b) end of step (i), (c) end 

of step (ii), (d) end of step (iii) and (e) end of step (iv). 

Fig. 30. Tube in tension and torsion: superelastic response presented with normal (left) and shear (right) stress-strain relation. 

 

 

 

 

 

 

matching for the shear stress-strain curve is worse. We assume that the main reason is temperature change of the sample

as a consequence of transformation during the experiment. Namely, the temperature increase at loading steepens the slope 

of the curve during transformation. 

5. Conclusions 

In this work we have derived, for the first time, a shell finite element formulation for the simulation of deformations of

thin-walled shape-memory alloys under mechanical and thermal loadings. Such formulations are much more suited to thin- 

walled and curved SMA structures than solid finite element formulations, which can have difficulties correctly representing 

the bending and buckling of the shell-like structures. As for the SMA material model, we revised the finite strain model

presented in [35] and [36] . Novel approaches related to its efficient finite element implementation are described. As for the

shell finite element formulations, we have applied a seven-parameter shell model and three corresponding finite elements 

that extensively use an assumed natural strain and enhanced assumed strain enhancements. Although only one formulation 

can fulfill the condition of the zero-through-the-thickness normal stress, and the other two can do that only approximately, 

the corresponding load-displacement curves differ only slightly. Also, although the formulation with the enhanced assumed 

strain enhancements can approximate better the incompressibility of the transformation strains, its results do not differ 

much from the formulations with the assumed natural strain formulations. 

Numerical examples show that for an excellent match for the results obtained with the solid SMA formulation, the 

number of elements needed for the shell SMA model is less than 25% of the number of elements needed for the solid SMA

model. We believe that for thin-walled SMAs the same (or even superior) accuracy of the results can be obtained with shell

formulations in comparison with solid formulations, for a considerably reduced number of elements in the mesh, and for 

a significant reduction in the computational time. Moreover, two of the applied shell finite element formulations, i.e. 3ANS 

and EAS, are designed to be low-sensitive with respect to mesh distortion, which can further reduce the necessary number 

of elements in the mesh. 

Although the numerical simulations offer the rapid generation of results, great attention is required for the determination 

of the input-material parameters to obtain reliable results. The process of determination for the SMA material parameters 

from experiments is trivial for small strain formulations, whereas for finite strain formulations more caution is needed, since 

the finite strain material models include a differentiation between the (reference, intermediate and current) configurations. 

Therefore, our future work will involve finite strain SMA material parameter determinations as part of developing opportu- 

nities for an enhancement of the current SMA shell formulation, e.g., a smooth transition of the thermomechanical response 

at the beginning and the end of the phase transformation and a consideration of the compression-tension asymmetry. 
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