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A B S T R A C T

Four nonlinear computational models for the surface wrinkling of curved shell-core systems under external
pressure are presented. Three of the considered finite element models neglect the displacements tangential to
the shell surface. Two of the models are static formulations and the other two are derived in the dynamic
framework. For the latter, the energy-decaying time-stepping algorithm is applied, which is suitable for
numerically stiff problems, such as shell-core systems, characterized by stiff membrane and soft wrinkling
deformation modes. In all cases the core is modeled by elastic springs. As a comparative problem we choose
the surface wrinkling of pressurized shell-core spheres. In particular, five systems with different material and
geometric properties are computed, which have different wrinkle patterns. A good agreement is found between
the results of the models as well as with the relevant references, which provide numerical and experimental
results. However, it has been observed that our reduced-order models are blind to the prediction of the
secondary transformation – from the dimple-like pattern to the labyrinthine pattern. Another conclusion is that
a non-tailored (i.e. standard) shell finite element on an elastic foundation combined with the energy-decaying
scheme, provides excellent predictions of the surface wrinkle patterns.
. Introduction

Instabilities of thin films on soft substrates exhibit a rich vari-
ty of deformation modes and associated periodic buckling patterns.
specially the patterns developed during surface wrinkling are inter-
sting in engineering, as they serve as a basis for many advanced
pplications (e.g. active control of wetting to achieve hydrophobic-
ty/hydrophilicity [1], smart adhesion [2], flexible electronics [3],
hin film metrology [4], tunable aerodynamic drag [5], etc.), which
ould otherwise be much more difficult (or impossible) to implement.
eformation modes such as wrinkling, creasing, folding, etc. are also
f interest in the biology of tissues, especially in organogenesis, since
hey can be used for the preliminary (mechanistic) description of
orphogenesis during the growth of e.g. intestine [6], brain [7] and

ung [8], growth of bacterial biofilms [9,10], etc. More about wrinkling
atterns and mechanisms can be found e.g. in a recent review paper by
an et al. [11].

For all these examples, a sound computational model, capable of
ccurately predicting the deformation mechanisms is essential. At first
lance, the task of creating such a model may seem very simple.
or example, wrinkling on spheres (which is also addressed in this
aper) can be defined by only three basic components: We need (𝑖)
thin spherical shell which is adhered to (𝑖𝑖) a soft substrate and

∗ Corresponding author.
E-mail address: miha.brojan@fs.uni-lj.si (M. Brojan).

(𝑖𝑖𝑖) an external hydrostatic pressure load. Note that the key in this
definition is the mismatch between the Young moduli of the shell and
the substrate (and the external pressure), but analogous problems can
be defined by considering the temperature loading and the mismatch of
the linear thermal expansion coefficients [12], the faster growth of the
shell [13], etc. However, it turns out that this shell/substrate structure
is remarkably difficult to solve because it has a very complex response
in terms of strong geometric nonlinearities, symmetry-breaking, mode
switching, a large number of meta-stable states, complex equilibrium
paths, etc.

One of the first contributions to the study of this particular prob-
lem was made by Cao et al. [12]. They performed experiments on
microscopic spheres subjected to temperature loading and related nu-
merical simulations in Abaqus [14]. Both approaches showed that
spherical systems prefer hexagonal dimple patterns at low over-stress
and the labyrinthine (herringbone-like) patterns at high over-stress.
The results were confirmed by micro-scale experiments by Breid and
Crosby [15] and Yin et al. [16] as well as macro-scale experiments
by Terwagne et al. [5] and Brojan et al. [17]. Li et at. [18] used 3D
finite elements and a numerical procedure based on the incremental
deformation theory involving spherical harmonics on a neo-Hookean
hyperelastic bi-layer sphere deformed by volumetric shrinking. A good
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agreement between the two methods was obtained on the dependence
of the critical shrinking factor and the mode number. In addition, their
numerical finite element simulations and experiments showed that the
sphere first buckles into a dimple pattern, which gradually evolves
into a labyrinthine pattern through subsequent bifurcations. The results
were confirmed in a study by Stoop et al. [19]. They implemented a
model order reduction of the displacement field of the shell by keep-
ing only radial displacements and derived a generalized fourth order
Swift-Hohenberg equation. It was solved using a finite-element scheme
based on subdivision surface basis functions [20,21] and dynamic
relaxation. Furthermore, Veldin et al. [22] used a similar approach to
reduce the Kirchhoff–Love shell model and developed a corresponding
discrete-Kirchhoff quadrilateral finite element. Together with a path-
following algorithm [23], this method proved to be computationally
efficient in predicting the characteristic wrinkling pattern at initial
post-buckling. Another efficient computational model for predicting
the formation of surface wrinkling in shell/substrate composites was
recently published by Lavrenčič et al. [24]. Implicit dynamics with
energy-decaying time stepping scheme that numerically dissipate in
the high frequency range was applied to capture the initial buckling
patterns and the transitions between the wrinkling modes in the far
post-buckling regime. The geometrically exact, rotationless, nonlinear
shell finite element [25] was used to model the shell. The method was
tested on axially compressed cylindrical shell-core composites as in the
work of Xu and Potier-Ferry [26]. In their study Xu and Potier-Ferry
investigated the formation and evolution of the wrinkling pattern. They
used a static approach with a geometrically nonlinear 7-parameter shell
model (see e.g. [27,28]) for the outer layer, approximated with an 8-
node 3D-shell element with reduced integration, soft core discretization
with an 8-node linear 3D-solid finite element with reduced integra-
tion and an advanced path-following technique [29]. To characterize
the forming surface pattern, they defined a dimensionless parameter
𝐶𝑠 = 𝐸𝑠∕𝐸𝑓 (𝑅∕𝑡)3∕2, where 𝐸𝑠∕𝐸𝑓 is the Young modulus ratio of the
substrate and the shell and 𝑅∕𝑡 is the radius of the shell’s curvature
normalized with its thickness. In their recent work, Xu et al. [30]
confirmed the validity of this parameter also for spherical geometry.

In this paper we compare four computational models for predicting
the wrinkling pattern at the onset of instabilities of thin shell-soft
core composites. For two models considered, we apply model order
reduction (see [19,22]) by assuming that the tangential displacements
are much smaller than the normal ones and can thus be neglected.
The first is our recent model from Veldin et al. [22], which is a
reduced-order discrete-Kirchhoff–Love formulation and the second is a
reduced-order geometrically exact inextensible director shell formula-
tion that enforces Kirchhoff kinematic constraint in a penalty manner
by large transverse shear moduli (as proposed e.g. in [31]). Moreover,
the latter model is extended in the third model to a framework of
nonlinear dynamics by applying an energy-decaying time-stepping al-
gorithm, which exhibits an excellent performance for numerically stiff
problems, typical for shells. The fourth model is a dynamic, geomet-
rically exact large rotation formulation [32,33] with energy-decaying
integrator [34]. In all cases, the Winkler-type foundation is used to
account for the contribution of the shell’s substrate, the same as in
e.g. [19,22,24,30]. A comparison with other models from the literature
on shells with five different values of the dimensionless parameter 𝐶𝑠
demonstrates that the four models can solve this highly nonlinear prob-
lem. Furthermore, the selection of the models allows the comparison of
(𝑖) order reduction versus full kinematics, (𝑖𝑖) statics versus dynamics
and (𝑖𝑖𝑖) discrete-Kirchhoff versus quasi-Kirchhoff assumptions for the
problem of pressurized shell-core systems.

Further details on all the computational models compared in this
paper are given in Section 2. In Section 3 we present the spherical
shell-core systems and wrinkling patterns together with their evolution
diagrams obtained by all four models and discuss the results. The
conclusions are drawn in Section 4.
 𝒖
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2. Computational models

In this section, we briefly describe the computational models for
shells on elastic foundation that will be used below for numerical
simulations of wrinkling of shell-core systems.

2.1. Kirchhoff–Love shell model

The initial shell configuration for the Kirchhoff–Love shell model is
described as

𝒙(𝜃1, 𝜃2, 𝜃3) = 0𝒙(𝜃1, 𝜃2) + 𝜃3𝒂3(𝜃1, 𝜃2), 0𝒙,𝛼 ⋅ 𝒂3 = 0, (1)

here 𝜃1 and 𝜃2 are the convective curvilinear coordinates of the shell
id-surface, 𝜃3 ∈ [−ℎ∕2, ℎ∕2] is the through-the-thickness convective

oordinate (ℎ is the thickness), 0𝒙 is a vector field indicating the
osition of the mid-surface in the space, 𝒂3 is a unit mid-surface normal
ector field, and (.),𝛼 = 𝜕(.)∕𝜕𝜃𝛼 . In the following, the symbol ̃ will
enote the objects of the deformed configuration. Because of the Kirch-
off’s kinematic constraint, the latter is described simply by adding
to the objects describing vector fields in (1). The Green–Lagrange
embrane and bending strains are

𝜖𝛼𝛽 = 1
2
(𝒖,𝛼 ⋅𝒖,𝛽 +𝒖,𝛼 ⋅𝒂𝛽 + 𝒂𝛼 ⋅ 𝒖,𝛽 ), (2)

𝜅𝛼𝛽 = −(�̃�3 ⋅ (𝒂𝛼 ,𝛽 +𝒖,𝛼𝛽 ) − 𝑏𝛼𝛽 ), (3)

respectively, where 𝒖 = 0�̃� − 0𝒙 is the displacement vector, 𝒂𝛼 = 0𝒙,𝛼
s the covariant base vector at the initial configuration, and 𝑏𝛼𝛽 =
𝒂𝛼 ⋅ 𝒂3,𝛽 is the initial curvature at the considered mid-surface point.
et us use the Voigt’s notation for the strains and energy conjugated
econd Piola–Kirchhoff membrane forces and bending moments as

=
[

𝜖11, 𝜖22, 2𝜖12
]𝑇 , 𝜿 =

[

𝜅11, 𝜅22, 2𝜅12
]𝑇 , (4)

𝒏 =
[

𝑛11, 𝑛22, 𝑛12
]𝑇 , 𝒎 =

[

𝑚11, 𝑚22, 𝑚12]𝑇 . (5)

The relations between the vectors in Eqs. (4) and (5), which take into
account the plane stress condition, are 𝒏 = 𝑯𝑚 𝝐 and 𝒎 = 𝑯𝑏 𝜿, where
𝑯𝑚 = 𝐸ℎ

1−𝜈2 𝑯 , 𝑯𝑏 =
𝐸ℎ3

12(1−𝜈2)𝑯 , and (see e.g. [35])

𝑯 =

⎡

⎢

⎢

⎢

⎣

𝑎11𝑎11 𝜈𝑎11𝑎22 + (1 − 𝜈)𝑎12𝑎12 𝑎11𝑎12

𝜈𝑎11𝑎22 + (1 − 𝜈)𝑎12𝑎12 𝑎22𝑎22 𝑎22𝑎12

𝑎11𝑎12 𝑎22𝑎12 1−𝜈
2
𝑎11𝑎22 + 1+𝜈

2
𝑎12𝑎12

⎤

⎥

⎥

⎥

⎦

.

(6)

Here, 𝐸 is elastic modulus and 𝜈 is Poisson’s ratio. The components
f the contravariant mid-surface metric tensor 𝑎𝛼𝛽 = 𝒂𝛼 ⋅ 𝒂𝛽 in Eq. (6)

follow from the relation 𝒂𝛼 ⋅ 𝒂𝛽 = 𝛿𝛽𝛼 , where 𝛿𝛽𝛼 is the Kronecker delta
symbol. With this notation at hand, we can write the potential energy
for the Kirchhoff–Love shell on elastic foundation as

𝛱(𝒖) = ∫
1
2
(𝝐 ⋅𝑯𝑚 𝝐+𝜿 ⋅𝑯𝑏 𝜿) 𝑑𝐴+∫

1
2
𝐾𝑠 (𝑢3)2 𝑑𝐴−∫

𝑢3 𝑝 𝑑𝐴, (7)

where 𝑝 is the surface pressure acting in the direction of 𝒂3, 𝐾𝑠 is
he spring stiffness representing the substrate reaction in the opposite
irection of the pressure action, 𝑢3 = 𝒖 ⋅ 𝒂3, and  is the shell’s

mid-surface. The minimum of the potential energy can be written as

𝛿𝛱(𝒖, 𝛿𝒖) = ∫
(𝛿𝝐 ⋅𝑯𝑚 𝝐 + 𝛿𝜿 ⋅𝑯𝑏 𝜿) 𝑑𝐴 + ∫

𝛿𝑢3 𝐾𝑠 𝑢3 𝑑𝐴

− ∫
𝛿𝑢3 𝑝 𝑑𝐴 = 0, (8)

here 𝛿 denotes variation and 𝛿𝝐 = [𝛿𝜖11, 𝛿𝜖22, 2𝛿𝜖12]𝑇 and 𝛿𝜿 =
𝛿𝜅11, 𝛿𝜅22, 2𝛿𝜅12]𝑇 are variations of strains. Eq. (8) corresponds to the
eak form of the considered mechanical problem.

A reduced-order Kirchhoff–Love shell theory, which is the basis for
he first computational model considered in this work, is obtained by
eglecting the tangential displacements and thus assuming

= 𝑢 𝒂 . (9)
3 3
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This considerably simplifies the equations of the theory presented
above, as shown in [19] and [22].

A reduced-order, discrete-Kirchhoff finite element with four nodes,
which will be used in the section with numerical examples, was derived
and presented in detail in [22]. In the following it is referred to as
DKQ-3 (as a discrete-Kirchhoff quadrilateral with 3 degrees of freedom
per node). Because of the applied linked interpolation [36], DKQ-3
provides a higher-order interpolation for membrane forces and bending
moments.

2.2. Geometrically exact shell models

The geometrically exact shell model with Reissner–Mindlin kine-
matics describes the initial configuration as in Eq. (1). However, the
deformed shell configuration is given as

�̃�(𝜃1, 𝜃2, 𝜃3) = 0�̃�(𝜃1, 𝜃2) + 𝜃3�̃�3(𝜃1, 𝜃2), 0�̃�,𝛼 ⋅ �̃�3 ≠ 0 (in general). (10)

The deformed shell-director vector �̃�3 is obtained by a rigid rotation
of the initial normal vector 𝒂3 as �̃�3 = Λ(𝜗1, 𝜗2)𝒂3, where Λ is a
rotation matrix parametrized by two suitable rotational parameters 𝜗1
and 𝜗2 (zero drilling rotation is adopted). For a discussion on different
parametrizations of large rotations for shells we refer to [37]. The
Green–Lagrange membrane strains are as in Eq. (2), and the bending
and the transverse shear strains are computed as

𝜅𝛼𝛽 = 1
2
(�̃�𝛼 ⋅ �̃�3,𝛽 + �̃�𝛽 ⋅ �̃�3,𝛼 − 𝒂𝛼 ⋅ 𝒂3,𝛽 − 𝒂𝛽 ⋅ 𝒂3,𝛼), (11)

𝛾𝛼3 = (�̃�𝛼 ⋅ �̃�3 − 𝒂𝛼 ⋅ 𝒂3). (12)

The relation between the membrane strains 𝝐 and the bending strains
(11) collected in 𝜿, and the second Piola–Kirchhoff membrane forces
𝒏 and bending moments 𝒎, see Eqs. (4) and (5), is still valid through
relations 𝒏 = 𝑯𝑚 𝝐 and 𝒎 = 𝑯𝑏 𝜿. Additionally, the transverse shear
trains and forces appear as

=
[

𝛾13, 𝛾23
]𝑇 , 𝒒 =

[

𝑞13, 𝑞23
]𝑇 , (13)

hich are related as 𝒒 = 𝐺𝑯𝑠𝜸, where

𝑠 = 𝑐 ℎ
[

𝑎11 𝑎12

𝑎12 𝑎22

]

. (14)

ere, 𝐺 denotes the transverse shear modulus and 𝑐 is the shear
orrection factor (usually set to 5∕6 for isotropic shells). The potential
nergy for this shear deformable formulation has the following form

(𝒖,𝝑) = ∫
1
2
(𝝐 ⋅𝑯𝑚 𝝐 + 𝜿 ⋅𝑯𝑏 𝜿 + 𝐺 𝜸 ⋅𝑯𝑠 𝜸)𝑑𝐴 + ∫

1
2
𝐾𝑠 (𝑢3)2 𝑑𝐴

− ∫
𝑢3 𝑝 𝑑𝐴, (15)

here 𝝑 = [𝜗1, 𝜗2]𝑇 . The minimum of the potential energy (15) can be
ritten as

𝛿𝛱(𝒖,𝝑, 𝛿𝒖, 𝛿𝝑) =

∫
(𝛿𝝐 ⋅𝑯𝑚 𝝐 + 𝛿𝜿 ⋅𝑯𝑏 𝜿 + 𝐺 𝛿𝜸 ⋅𝑯𝑠 𝜸)𝑑𝐴 + ∫

𝛿𝑢3 𝐾𝑠 𝑢3 𝑑𝐴

− ∫
𝛿𝑢3 𝑝 𝑑𝐴 = 0,

(16)

here 𝛿𝜸 = [𝛿𝛾13, 𝛿𝛾23]𝑇 is the variation of the transverse shear strains.
he variation of the shell director relates to the variation of the ro-
ational parameters as 𝛿�̃�3 = 𝑨𝛿𝝑, with 𝑨 depending on the chosen
arametrization of the finite rotations, see e.g. [37] for details.

In the dynamic setting, the total energy of the shell is a sum of
inetic and potential energy

(𝒖,𝝑) = 1
2 ∫

(𝐴𝜌0 �̇� ⋅ �̇� + 𝐼𝜌0 ̇̃𝒂3 ⋅ ̇̃𝒂3) 𝑑𝐴 +𝛱(𝒖,𝝑), (17)

where 𝐴𝜌0 = 𝜌0ℎ and 𝐼𝜌0 = 𝜌0ℎ3∕12 are mass inertia terms, 𝜌0 is the
initial mass density and the dot denotes the derivative with respect
3

to time 𝑡. The principle of least action can be used to obtain the
corresponding variational equation of the above functional, which can
be written as equivalent d’Alembert equations (see e.g. [38]) in terms
of variation of displacements 𝛿𝒖 and rotations 𝛿𝝑

𝐺𝑑𝑦𝑛(𝒖,𝝑, 𝛿𝒖, 𝛿𝝑) = ∫
(𝐴𝜌0 �̈� ⋅ 𝛿𝒖 + 𝐼𝜌0 ̈̃𝒂3 ⋅ 𝛿�̃�3) 𝑑𝐴 + 𝛿𝛱(𝒖,𝝑, 𝛿𝒖, 𝛿𝝑) = 0.

(18)

q. (18) requires spatial (i.e. finite element) discretization as well as
he time-stepping algorithm for the integration in time.

In the section with numerical examples, we use a dynamic shell
ormulation based on the above equations and denote it as RM-5-
y (as Reissner–Mindlin element with 5 degrees of freedom per node

or dynamics). This is the second computational model considered in
his work. As for the spatial discretization, RM-5-Dy is the standard
our-node shell finite element with bi-linear interpolations for the mid-
urface and shell director field. Because it uses the assumed natural
train concept of Dvorkin and Bathe [39] for the transverse shear
trains, it is sometimes referred to as MITC4 element, see e.g. [40].
e refer to e.g. [41] and [37] for description of the implementation

f these interpolations, and for the singularity-free description of the
otion of the shell director, respectively. As for the time discretization,
e apply the energy-decaying time-stepping algorithm [34,42] that
ossesses the following property

𝐾𝑛+1 −𝐾𝑛) + (𝛱𝑛+1 −𝛱𝑛) + = 0 (19)

or free motion, which guarantees unconditional stability for nonlinear
ynamics. Here, 𝐾 is kinetic energy, 𝛱 is potential energy,  ≥ 0 is
issipation of the total energy within the time interval, and subscripts
and 𝑛 + 1 denote the values at subsequent time points 𝑡𝑛+1 > 𝑡𝑛.

he range of dissipation depends on the user-defined parameters 𝛼
nd 𝛽, which control the dissipation of kinetic and potential energy.
he dissipative properties of the applied energy-decaying scheme with
espect to some more common numerically dissipative schemes are
resented in [24,42,43]. It is worth noting that the numerical dissi-
ation is essential in the dynamics of shells that is represented by
umerically stiff equations. The latter is because of the large difference
etween the flexible bending/wrinkling and the much stiffer membrane
eformation modes. It is desirable that high frequencies are dissipated,
ecause they are an artifact of spatial discretization, and that the
undamental frequencies are not affected by numerical dissipation. The
pplied energy-decaying scheme has such a property.

In the section with numerical examples, we also use a dynamic finite
lement formulation called QKQ-3-Dy (as quasi-Kirchhoff quadrilateral
lement with 3 degrees of freedom per node for dynamics), which is
ased on a reduced-order version of the above described shell theory.
his is the third computational model considered in this work. It applies
q. (9) that neglects the tangential displacements and considerably
implifies the kinematics of the geometrically exact shell model. Since
his assumption does not fit well with the shear-deformable model, we
urther apply a quasi-Kirchhoff–Love simplification by using a large
alue for 𝐺 (of the order ∼ 105𝐸) in Eq. (14), which plays the role
f the penalty number in the computations and allows only negligi-
le transverse shear strains. The spatial and temporal discretizations
f QKQ-3-Dy are the same as for RM-5-Dy. The difference between
KQ-3-Dy and RM-5-Dy is that the former formulation uses kinematic
onstraint (9) and mimics the Kirchhoff–Love solution (because of
arge value for shear modulus 𝐺), whereas the latter does not use any
implifications or modifications.

In the section with numerical examples, the static version of QKQ-
-Dy, denoted as QKQ-3 is also used. This is the fourth and the last
omputational model considered in this work. The QKQ-3 has similari-
ies with DKQ-3: both are based on reduced kinematics and both tend to
enerate a Kirchhoff–Love solution for the problem of shell on an elastic
oundation. The first major difference between the formulations is the
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Table 1
Properties of applied computational models.

FE model Neglection of
tangential displacements

Reissner-Mindlin
kinematics

Kirchhoff-Love
kinematics

Large shear modulus
(penalty number)

Statics Dynamics

DKQ-3 � – � – � –
QKQ-3 � � – � � –
QKQ-3-Dy � � – � – �
RM-5-Dy – � – – – �
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approximation order of the membrane forces and bending moments,
which is much higher for DKQ-3 due to the linked interpolation that
can be applied when the starting point is zero-shear Kirchhoff–Love
shell model. The second major difference is that the DKQ-3 allows the
use of derivatives of normal displacement as rotational degrees of free-
dom, whereas QKQ-3 has to apply parametrization of finite rotations.
Nevertheless, it is expected that DKQ-3 and QKQ-3 will provide similar
numerical solutions for finer meshes.

3. Results and discussion

The finite element codes of the considered shell formulations were
generated using the Mathematica’s add on AceGen [44], which enables
an automatic differentiation of large expressions and algorithms. The
codes were further included into the nonlinear finite element computer
code AceFEM [45].

3.1. Summary of computational models

The shell-core systems specified below were simulated by four finite
element computational models briefly presented in Section 2 and sum-
marized in Table 1. We note that all derived finite elements are quadri-
laterals with four nodes. As mentioned above, these computational
models are named as follows:

• QKQ-3 and QKQ-3-Dy denote the static and dynamic formu-
lations with reduced-order, quasi-Kirchhoff kinematics that is
imposed by large transverse shear modulus. The QKQ-3-Dy uses
energy-decaying time-stepping scheme.

• DKQ-3 denotes the static formulation with reduced-order,
discrete-Kirchhoff kinematics that is described in detail in [22].

• RM-5-Dy denotes the dynamic, large rotation, geometrically ex-
act, shell formulation (its rotation-free version, see [25], was
already applied for cylinders on substrates in [24]). The RM-5-Dy
uses energy-decaying time-stepping scheme.

Static analyses with DKQ-3 and QKQ-3 were performed using the
ath-following method presented in [23]. The identification of critical
oints and solution branches of the equilibrium paths were not tracked.
or QKQ-3 and QKQ-3-Dy a large artificial transverse shear modulus of
rder 𝐺 = 105𝐸 was prescribed, which restricted the development of
he transverse shear strains and numerically enforced kinematics that
esembles the Kirchhoff–Love’s.

Dynamic analyses with RM-5-Dy and QKQ-3-Dy were performed by
he energy-decaying time stepping scheme presented in [42] and [34]
for comparison of the applied time integration with more traditional
nes, we refer to [43]). The user-defined parameters that control nu-
erical dissipation in the high-frequency range in the kinetic and
otential energy were each set to 𝛼 = 𝛽 = 0.5, thus introducing
considerable degree of numerical dissipation into the algorithm.
e note that numerical dissipation is favorable because it eliminates

dverse effects of spurious higher frequency modes on the numerical
olution. High frequencies are an artifact of spatial discretization and
o not reflect the high frequencies of the original continuum problem.
or accurate representation of short waves in the elastic continuum,
n extremely fine mesh is required, and since such meshes are usually
ot a viable option in structural dynamics, numerical damping of
aguely represented short waves associated with high-frequency modes
 s

4

s desirable. In the case of surface wrinkling, numerical dissipation
ffectively eliminates the erroneous high-frequency modes that pollute
he wrinkling pattern and allows smoother development of wrinkles
hroughout the sphere and a smoother continuation of the analysis
fter the initial wrinkling pattern formation. The adaptive time step
lgorithm was applied with the largest and smallest allowed time steps
f 𝛥𝑡 = 0.5 s and 𝛥𝑡 = 5 ⋅ 10−7 s (except for the largest 𝐶𝑠 used, where

longer times steps were allowed).

3.2. Properties of spherical shell-core systems

In order to compare and evaluate the proposed computational mod-
els, we selected five specific examples of the spherical shell-core system
with different material and geometric properties:

• shell-core 1: 𝐸𝑓 = 3000.0 MPa, 𝐸𝑠 = 3.0 MPa, 𝑅 = 20.0 mm,
ℎ = 0.35 mm, 𝜈𝑓 = 0.3, 𝜈𝑠 = 0.49, 𝐾𝑠 = 0.8529 N/mm3,

• shell-core 2: 𝐸𝑓 = 250 MPa, 𝐸𝑠 = 2.5 MPa, 𝑅 = 20.0 mm,
ℎ = 0.4 mm, 𝜈𝑓 = 0.3, 𝜈𝑠 = 0.49, 𝐾𝑠 = 1.3527 N/mm3,

• shell-core 3: 𝐸𝑓 = 2.1 MPa, 𝐸𝑠 = 0.23 MPa, 𝑅 = 20.0 mm,
ℎ = 0.6 mm, 𝜈𝑓 = 0.49, 𝜈𝑠 = 0.49, 𝐾𝑠 = 0.1738 N/mm3,

• shell-core 4: 𝐸𝑓 = 2.1 MPa, 𝐸𝑠 = 0.23 MPa, 𝑅 = 20.0 mm,
ℎ = 0.2 mm, 𝜈𝑓 = 0.49, 𝜈𝑠 = 0.49, 𝐾𝑠 = 0.5223 N/mm3,

• shell-core 5: 𝐸𝑓 = 25.0 MPa, 𝐸𝑠 = 3.0 MPa, 𝑅 = 20.0 mm,
ℎ = 0.05 mm, 𝜈𝑓 = 0.3, 𝜈𝑠 = 0.49, 𝐾𝑠 = 29.8386 N/mm3.

ere, 𝐸𝑓 , 𝜈𝑓 and 𝐸𝑠, 𝜈𝑠 denote the Young’s modulus and the Poisson’s
atio of the shell (i.e. film) and the substrate, respectively, 𝑅 and ℎ are
he radius and the thickness of the shell and

𝑠 =
�̄�𝑠
𝑚𝑅

2(1 − 𝜈𝑠)2(𝑚2 − 1)
3 − 4𝜈𝑠

(20)

is the (Winkler’s) foundation constant, as derived in [46], where �̄�𝑠 =
𝑠∕(1 − 𝜈2𝑠 ), 𝑚 = 2𝜋𝑅∕𝜆 and 𝜆 = 2𝜋ℎ(�̄�𝑓∕(3�̄�∗

𝑠 ))
1∕3, �̄�𝑓 = 𝐸𝑓∕(1 − 𝜈2𝑓 ),

̄ ∗
𝑠 = 4�̄�𝑠(1 − 𝜈𝑠)2∕(3 − 4𝜈𝑠). The substrate was modeled as a Winkler’s

oundation (see also [19,22,24,30] for such approach). The values of
he characteristic dimensionless parameter, which is defined as 𝐶𝑠 =
𝐸𝑠∕𝐸𝑓 (𝑅∕ℎ)3∕2 (see [30]), are thus (𝐶𝑠) = (0.43, 3.5, 21.1, 109.5, 960) for
he five systems. The pressure 𝑝 that is acting on the outer surface of the
hell was considered as conservative loading. For dynamic simulations,
he loading rate was 10 kPa/s (except for 𝐶𝑠 = 960, where a slow
oading rate 1 kPa/s was used). The initial mass density was assumed
o be 𝜌0 = 0.965 g/cm3, which corresponds to a mass density of
olydimethylsiloxane [47], a material commonly used in experiments
n shell-core systems.

No displacement/rotation boundary conditions were applied in the
omputations. They are not required for dynamics, where the algorith-
ically consistent tangent matrix is always positive definite. They are

lso not needed for static analyses of curved surfaces with reduced-
rder formulations, see [22]. In the reduced-order formulations, the
angential components of the displacements are zero, which already
ixes the system in space. Thus, the rigid-body motions of a curved shell
lement with reduced displacements are not possible, and additional
isplacements/rotations boundary conditions are redundant, because
he consistent tangent matrix will be always positive definite also in
tatics.
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Fig. 1. Pattern evolution and load–displacement paths (𝑝-𝑢3) for all five shell-core composites and all four computational models.
We used highly non-structured meshes with (𝑛el) = (89 855, 52 431,
89 855, 148 512, 788 534) elements, which corresponds to the characteris-
tic length of the quadrilateral element (𝑙avg) = (𝑅∕83.3, 𝑅∕62.5, 𝑅∕83.3,
𝑅∕125, 𝑅∕250) for each 𝐶𝑠. The number of elements was selected based
5

on the convergence analysis performed in [22]. During the analysis we
monitored the pressure level versus normal displacement of a particular
node of the mesh. For each 𝐶𝑠 the monitored node remained the
same.
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Fig. 2. Comparison of load–displacement paths and end-of-simulation patterns for all
five shell-core composites and all four computational models.

3.3. Results of analyses

Fig. 1 summarizes the results of our simulations. It shows a grid
of twenty panels, consisting of five columns and four rows. A column
 a

6

corresponds to a shell-core spherical system with a particular value of
𝐶𝑠 and a row corresponds to the applied computational model. The
oad–displacement diagrams (pressure 𝑝 versus displacement 𝑢3 of a
onitored node of the mesh specified for each 𝐶𝑠) are recorded and

napshots of displacement fields at different pressure levels are taken
o show the evolution of the wrinkling pattern.

In all cases, the panels show the transition from an initially uniform
pherical deformation (smooth surface) to a deformation pattern with
imples, which eventually evolve into a labyrinthine pattern for one
f the computational models. In the first case (𝐶𝑠 = 0.43), the DKQ-3

and QKQ-3 models predict that only a part of the sphere is covered by
the dimple pattern (around the opposite poles) with a relatively large
wavelength (compared to other 𝐶𝑠 values) and the rest of the sphere
remains smooth, while QKQ-3-Dy predicts a complete coverage by the
dimples. Interestingly, at the onset of wrinkling, DKQ-3 and QKQ-3-
Dy predict a dominant dimple (more pronounced than the adjacent)
at the opposite poles of the sphere around which a small region of
a fairly homogenous dimple pattern (mentioned above) is gradually
developed as the pressure load is increased. On the other hand, the
opposite can be observed in the case of RM-5-Dy. At the onset of
wrinkling, this computational model first predicts a small region of
dimples (at the two poles), which evolve into an isolated dimple at
both poles. Such an isolated dimple mode was also predicted in [48]
and [30]. In other cases of the 𝐶𝑠 parameter, all computational models
predict a fully covered sphere with dimple pattern at small overstress.
In two cases, 𝐶𝑠 = 21.1 and 𝐶𝑠 = 109.5, only RM-5-Dy predicts
further (secondary) transitions to a deformation pattern with channels
(labyrinthine pattern), after the deformation pattern with dimples was
first vaguely expressed.

A good agreement is also obtained between our results for 𝐶𝑠 = 3.5
and those of Xu et al. [30], where 𝐶𝑠 = 2.6 and 𝐶𝑠 = 4.9 was used. In all
three cases the obtained pattern corresponds to the dimple (buckyball)
pattern and the wavelength of our simulation is, as expected, between
the two from the literature. Note that in our case we used an external
pressure to load the system and the reference results were obtained
by thermal shrinking, which shows that the wrinkling mechanism is
universal and independent of the external stimulus, as mentioned in
the introduction. A similar agreement between our results and the
results from [30] is obtained in the case of 𝐶𝑠 = 21.1 (both studies
used this value) for the wavelength, but only RM-5-Dy can provide the
(dimple-labyrinthine) hybrid pattern. Note that QKQ-3-Dy also showed
this pattern before the reverse transformation back to dimples. In the
case of 𝐶𝑠 = 109.5 we obtain on the one hand small-wavelengths
imple patterns, locally arranged in checkerboard mode (which is not
n energy minimum mode on a sphere, see e.g. Stoop [19]) for DKQ-
, QKQ-3 and QKQ-3-Dy, and on the other hand small-wavelength
abyrinthine pattern in the case of Rm-5-Dy. For the largest 𝐶𝑠, 𝐶𝑠 =
60, we obtain regions with channel-like wrinkling pattern using DKQ-
and QKQ-3, a fully covered surface with channel-like pattern in the

ase of QKQ-3-Dy and not fully developed wrinkling pattern for RM-5-
y. Ref. [30] reports only the checkerboard dimple mode with smaller
avelength, as even larger value of 𝐶𝑠, 𝐶𝑠 = 1018, was used. Note also

hat Xu et al. [30] considered in their numerical model an one-eighth
ymmetry of the system via symmetrical boundary conditions.

Fig. 1 also shows that as 𝐶𝑠 increases, the number of dimples
ncreases (and the characteristic wavelength decreases). Also, the simu-
ations become more difficult to run, because the number of meta-stable
tates increases rapidly (see Ref. [49] for more details). This is illus-
rated by the fact that the analyses tend to fail earlier with increasing
𝑠 after the initial formation of the wrinkling pattern.

Fig. 2(a)–(e) show the comparisons of the load–displacement curve
nd the final wrinkling patterns for each 𝐶𝑠. A complete agreement
etween the load–displacement (𝑝-𝑢3) curves is obtained before buck-
ing and, in most cases, a fairly good match between the predictions of
uckling pressure at the onset of wrinkling. The critical pressures are
pproximately: between 𝑝 ≐ −1.5 MPa and 𝑝 ≐ −2.2 MPa for 𝐶 = 0.43
𝑠
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Fig. 3. End-of-simulation patterns for all five shell-core composites and all four computational models.
(see Fig. 2a), 𝑝 ≐ −1 MPa for 𝐶𝑠 = 3.5 (see Fig. 2b), 𝑝 ≐ −0.3 MPa for
𝐶𝑠 = 21.1 (see Fig. 2c), 𝑝 ≐ −0.8 MPa for 𝐶𝑠 = 109.5 (see Fig. 2d) and
𝑝 ≐ −50 MPa for 𝐶𝑠 = 960 (see Figs. 2(e) and 1). However, further post-
buckling paths (in general) do not match. This is because the wrinkling
pattern predicted by a particular formulation is slightly different from
the wrinkling pattern predicted by another formulation. In other words,
the dimples do not appear at the same locations in the mesh, although
the patterns (at least for DKQ-3, QKQ-3 and QKQ-3-Dy) are practically
the same for a given 𝐶𝑠. During the analysis, the pattern starts to move
over the surface, so the monitored node is not always at the same
position with respect to the pattern. Its position can change between
the dimple, the peak or somewhere in between, which is indicated by
a more ‘‘wavy’’ load–displacement curve when zoomed in.

For 𝐶𝑠 = 0.43 (see Fig. 2a), the computational models provide
quite different predictions for the critical buckling pressure, ranging
from 𝑝 ≐ −1.5 MPa and 𝑝 ≐ −2.2 MPa (the critical pressure for
QKQ-3-Dy is the highest, followed by QKQ-3, DKQ-3 and the lowest
buckling pressure is predicted by RM-5-Dy). Similarly, the obtained
patterns differ, as the isolated dimple mode is predicted by RM-5-Dy,
the partially covered surface by DKQ-3 and QKQ-3 and the completely
dimple covered surface by QKQ-3-Dy, as already mentioned above. For
𝐶𝑠 = 3.5 (see Fig. 2b), all four computational models give similar
results in terms of number of dimples and critical pressure. We find
that the dimples begin to form on one side of the sphere and propagate
across the surface. When the pattern is fully developed, it begins to
move slowly across the mesh. This is especially noticeable in DKQ-3,
where around −1.5 MPa the pattern is moving substantially, making
an intertwined load–displacement curve. It can also be observed that
RM-5-Dy starts to stretch the dimples towards the end of the analysis.
For 𝐶𝑠 = 21.1 (see Fig. 2c), RM-5-Dy computes a different end de-
formation shape than other formulations – it predicts the labyrinthine
pattern while other formulations predict dimples. The critical pressure
of QKQ-3-Dy is higher than the critical pressures predicted by DKQ-3,
QKQ-3 and RM-5-Dy. RM-5-Dy initially predicts a vaguely developed
dimple pattern that very quickly transforms into a pattern that is a
7

mixture of dimples and channels. The average distance between the
channels (the wavelength) is in the same range as the wavelengths
of the dimple patterns in the other three formulations. For DKQ-3,
QKQ-3 and QKQ-3-Dy, the number of dimples is similar. For 𝐶𝑠 =
109.5 (see Fig. 2d), we again observe that the critical pressure is the
highest for QKQ-3-Dy, slightly lower for QKQ-3, and DKQ-3 and RM-
5-Dy predict the lowest critical pressure. As for the wrinkling pattern,
DKQ-3, QKQ-3 and QKQ-3-Dy all predict similar dimple checkerboard
patterns (which are non-optimal), while RM-5-Dy initially predicts a
vaguely developed dimple pattern that rapidly transforms into a fully
developed labyrinthine pattern. For 𝐶𝑠 = 960 (see Fig. 2e), we observe
that the critical pressure is the highest for QKQ-3 and the others are
approximately the same (around −50 MPa).

A more illustrative comparison between the developed patterns is
shown in Fig. 3. As before, each column in this figure corresponds to
a fixed 𝐶𝑠 value of the shell-core system and each row corresponds
to the relevant computational model. The 𝑢3 displacement fields were
recorded between 𝑝 ≐ −1.5 MPa and 𝑝 ≐ −2.2 MPa for the first column,
at approximately 𝑝 ≐ −1.5 MPa for the second column, at 𝑝 ≐ −0.35 MPa
for the third column, between 𝑝 ≐ −1.0 MPa and 𝑝 ≐ −0.8 MPa for the
fourth column and around 𝑝 ≐ −50 MPa for the fifth column.

We find a relatively good agreement between the patterns in each
column, with few exceptions. Namely, (𝑖) only RM-5-Dy can compute
an isolated dimple mode (see [48] and [30]) for the 𝐶𝑠 = 0.43,
while formulations DKQ-3 and QKQ-3Dy predict a partially dimpled
surface (and the rest smooth) and QKQ-3-Dy predicts a fully covered
surface), (𝑖𝑖) RM-5-Dy predicts for 𝐶𝑠 = 21.1 and 𝐶𝑠 = 109.5 a
secondary transition from dimple to labyrinthine pattern and (𝑖𝑖𝑖) for
𝐶𝑠 = 960 DKQ-3 and QKQ-3 predict localized labyrinthine areas,
QKQ-3-Dy predicts a surface fully covered with labyrinthine pattern
and RM-5-Dy did not converge in this case. Moreover, we find the
following number of dimples (𝑛) = (2 × 14, 2 × (7 − 19), 55, 2 × 1) for
𝐶𝑠 = 0.43, (𝑛) = (132, 132, 125, ∕) for 𝐶𝑠 = 3.5, (𝑛) = (221, 216, 206, ∕)
for 𝐶𝑠 = 21.1 and around 2000 for the 𝐶𝑠 = 109.5 case. The number
of dimples could not be estimated accurately enough for 𝐶 = 960.
𝑠



T. Veldin, M. Lavrenčič, B. Brank et al. International Journal of Non-Linear Mechanics 127 (2020) 103611
Note that the results for each numerical model are given in this order:
(DKQ-3,QKQ-3,QKQ-3-Dy,RM-5-Dy) and that the number of dimples
for RM-5-Dy (other that for 𝐶𝑠 = 0.43) were not recorded.

3.4. Performance of computational models

The RM-5-Dy has no kinematic (and other) simplifications, except
the one related to the modeling of the substrate by springs, which
is, however, common to all four formulations we use. In this sense,
the results of RM-5-Dy could be trusted the most. On the other hand,
the choice of the time-stepping scheme and the choice of the level of
numerical dissipation influence the RM-5-Dy results. As for the time-
stepping scheme, we chose the one that decays (or conserves) the
energy of the elastic system for autonomous motion, and is in our
opinion the most suitable for the problem of surface wrinkling. The con-
trollable energy decaying comes with the price of first-order accuracy,
but since very small time steps were used (except in the initial stage
of analyses) this should not represent a major problem. We note that
numerical dissipation is absolutely necessary for wrinkling simulation
with structural dynamics schemes. The high-frequency modes (which
are erroneous due to the spatial discretization) need to be damped
out to avoid pollution of the results. However, too much dissipation
also has undesirable effects on the results, since it also affects the
basic, low-frequency modes. How the level of dissipation (controlled by
parameters 𝛼 and 𝛽) influences the results can be illustrated for 𝐶𝑠 =
3.5. In this particular case, the low dissipation caused a non-uniform
initiation of dimples (i.e. dimples emerged only on approximately
one half of the sphere). This initial pattern was floating and slightly
changing continuously, which demanded very small time steps that
prevented full pattern formation. Instead, the erroneous high-frequency
modes generated some deep dimples with self-contact. For this reason,
we chose the approximate minimum level of dissipation that effectively
eliminates the high-frequency modes that pollute the results. We should
emphasize, however, that the type and the density of the emerging
pattern was independent of the chosen level of dissipation.

Furthermore, Fig. 1 shows that for 𝐶𝑠 = 21.1 and 𝐶𝑠 = 109.5
the first pattern, which is the dimple-mode, is vaguely represented by
the dynamic formulations QKQ-3-Dy and RM-5-Dy, and is immediately
replaced by a labyrinth-mode. The labyrinth pattern further evolves
for RM-5-Dy, but changes to a dimple pattern for QKQ-3-Dy. This
suggests that our dynamic formulations are prone to (almost) skip the
first dimple-mode for systems when transition to the labyrinth mode
is expected. On the other hand, from the comparison between QKQ-3-
Dy and RM-5-Dy for 𝐶𝑠 = 21.1 and 𝐶𝑠 = 109.5, it can be concluded
that the reduced-order models compute labyrinth as an intermediate
pattern and predict dimples as the final pattern even for systems
where labyrinth is expected as the final pattern according to RM-5-
Dy and [19]. We can conclude that our dynamic formulations mask
the first dimple-mode for cases where a transition is expected and that
the reduced-order models prefer dimple-mode to the labyrinth-mode
for such cases.

The static analysis with RM-5 finite element and our path-following
method did not yield any meaningful results due to the failure of the
solution method. However, our path-following method was successful
in all other cases. We contribute its successful use in the computation of
the wrinkling patterns to two factors. The first factor is their application
to reduced-order models. Namely, all our static formulations neglect
tangential displacements, which reduces small disturbing tangential
motions at the onset of the pattern formation and considerably im-
proves the chances of the path-following method to find a solution.
The second factor is a careful selection of the parameters governing
the arc-length procedure that were changing during the computation.

The purpose of reducing tangential displacements is to reduce the
complexity of the problem and provide a solution for static analysis that
cannot otherwise be obtained using standard path-following techniques
for non-reduced models. However, the comparison of the numerical
8

results shows that the reduction is also useful in the physical sense,
since the results of the reduced static models (DKQ-3 and QKQ-3)
are comparable to the results of the non-reduced model RM-5-Dy, at
least with respect to the first wrinkling pattern. It can be therefore
concluded that the models with reduced displacements are suitable for
the computations of patterns at the onset of wrinkling. However, is
seems that they cannot correctly predict the patterns (at high over-
stress) when higher order pattern transitions are expected. In this sense,
the reduced-order models have similar shortcomings as the linearized
buckling models for predicting buckling modes.

In the static analyses we monitored the change in the number of
negative pivots of the stiffness matrix, which indicates whether the
critical point (either the limit or the bifurcation point) has been passed.
In case of 𝐶𝑠 = 3.5 analysis with DKQ-3, the first negative pivot appears
around the formation of the wrinkling pattern. When the analysis
continues, 1 negative pivot remains in 8 further steps. After that it
switches back to 0 negative pivots. When the analysis continues, the
number of negative pivots changes between 1 and 0. The situation is
very similar with QKQ-3. In case of 𝐶𝑠 = 21.1 analysis with DKQ-3 and
QKQ-3, the first negative pivot appears after the dimple pattern starts to
form. After a few more steps, the number of negative pivots drops back
to 0. In case of 𝐶𝑠 = 109.5, the number of negative pivots for DKQ-3 and
QKQ-3 appears after the dimple-channel pattern has already partially
formed. With increasing load, the number of negative pivots changes
from 0 to 2, but all these limit and bifurcation points are related to
the slight rearrangements of the initial pattern and not to the pattern
transition.

4. Conclusions

Four computational models were applied to solve the mechanical
problem of surface wrinkling of spherical shell-core systems under
external pressure. The solution of the problem was searched in the
context of both statics and dynamics. For the dynamics and this class
of problems, we propose an application of energy-decaying schemes
that can dissipate the energy of higher modes and thus control the
overall stability of the numerical computations over a long period of
time. It was found that the energy-decaying scheme with a high level of
dissipation, which can effectively suppress surface movements (associ-
ated with spurious high-frequency deformation modes) of the wrinkling
pattern after its formation, is efficient for this class of problems.

Based on the above presented computational results, we also pro-
pose the use of a simplified approach with reduced-order kinematics,
which has proven to be an effective and accurate substitute (at least for
small and medium values of the characteristic parameter of the shell-
core system 𝐶𝑠) for standard, unmodified finite element procedures.
It is important to note that reduced-order computational models can
provide a comparable solution (with respect to the wrinkling pat-
tern and critical pressure) compared to an unmodified computational
model. This is especially important in view of the fact that standard
(static and dynamic) finite element procedures are very likely to fail
if they are simply applied to treat this type of problems. Our results
show that computational models with reduced-order kinematics pro-
vide similar results to unmodified (i.e. standard) formulations for small
and medium values of 𝐶𝑠, when the formation of dimple wrinkling
pattern is expected. For larger values of 𝐶𝑠, when the formation of
(secondary transition to) a labyrinthine wrinkling pattern is likely, the
reduced-order models are less accurate.

Finally, we note that in the qualitative prediction of wrinkle patterns
we obtain a good agreement between our results and those of Xu
et al. [30], where experimental results and numerical results based
on one-eight symmetry were reported. In our case, we used external
pressure to stimulate the system and the reference results are obtained
by thermal shrinkage, which in turn shows that the wrinkle mechanism
is universal and independent of the external stimulus.
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