Laboratory for Dynamics of Machines and Structures 
Evaluation of the frequency-dependent Young’s modulus and damping factor of rubber from experiment and their implementation in a finite-element analysis
 D. Koblar and M. Boltežar
Experimental Techniques, published online 11 November 2013

download pdf   link to publisher
Rubbers are commonly used in industry to reduce vibration transfer and, consequently, reduce structural noise. The vibration transfer through rubber can be modelled with finite elements; however to achieve satisfactory results it is necessary to know the viscoelastic properties of the rubber. This paper describes the commonly used theory of vibration transmission through rubber modelled as a single-degree-of-freedom (SDOF) system. Three simplified rubber models are used to identify the constant Young’s modulus and damping factor from the measurements of two different rubber specimens, and with the obtained results the theoretical transmissibilities are calculated. The frequency-dependent Young’s modulus and damping factor are also calculated from measurements. The practical use of previous measurements of dynamic material properties is presented in a finite-element analysis, where three different definitions of the dynamic material properties are carried out for four different rubber specimens, which corresponds to twelve analyses. The finite-element analyses are then compared with the measurements, and general guidelines for using dynamic material properties in ANSYS Workbench v.14 are given.


David Koblar, PhD

  Domel d.d., Železniki
  +386 1 4771 230


Miha Boltežar, PhD

  Ladisk, Faculty of Mechanical Engineering, University of Ljubljana
  +386 1 4771 608
Scholar Home Xs